Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
The properties of the FCC-of the gold crystal were calculated using an analytical method (without computer modeling) in the temperature range: T=10-1337 K and pressures: P=0-110 GPa. The following properties were calculated: state equation, Debye temperature, first and second Gruneisen parameters, elastic modulus (BT), thermal expansion coefficient (αp), isochoric (Cv) and isobaric (Cp) heat capacity, specific surface energy. Derivatives of these properties also have been calculated both by temperature along three isobars and by pressure along three isotherms. The obtained results showed good agreement with the other authors results. It was shown that there is a certain temperature TB in which the product α_pBT does not change during the crystal compression. At T>TB, the α_pBT function increases, and at T<TB, it decreases with an increase in pressure. For FCC-Au has been received T_B=132 K. It was shown that the isotherms of the baric derivative of elastic modulus B'(P) intersect at the point: P>21.58 GPa, and B'(P)=7.43. At P<21.58 GPa, the C'v(P) function increases, and at P>21.58 GPa, it decreases with increasing temperature. It was shown that the isotherm of the baric derivative of the isochoric heat capacity C'v(P) has a minimum, and the isotherm of the baric derivative of the isobaric heat capacity C'_p(P) has both a minimum and a maximum. Based on the obtained dependencies, some approximations, which are used to calculate the properties of the crystal under high P-T-conditions, have been analyzed. Keywords: gold, pressure, elastic modulus, thermal expansion, heat capacity, Debye temperature, Gruneisen parameter, surface energy.
- F. Birch. J. Geophys. Res. 57, 2, 227 (1952). DOI: 10.1029/JZ057i002p00227
- M.S. Anderson, C.A. Swenson. J. Phys. Chem. Solids 36, 2, 145 (1975). DOI: 10.1016/0022-3697(75)90004-9
- T. Yagi. J. Phys. Chem. Solids 39, 5, 563 (1978). DOI: 10.1016/0022-3697(78)90037-9
- J.L. Tallon. J. Phys. Chem. Solids 41, 8, 837 (1980). DOI: 10.1016/0022-3697(80)90028-1
- O.L. Anderson. Phys. Earth Planetary Interiors 22, 3--4, 165 (1980). DOI: 10.1016/0031-9201(80)90029-1
- O.L. Anderson, K. Zou. Phys. Chem. Minerals 16, 7, 642 (1989). DOI: 10.1007/BF00223312
- J. Shanker, M. Kumar. Phys. Status Solidi B 179, 2, 351 (1993). DOI: 10.1002/pssb.2221790209
- J. Rault. Eur. Phys. J. B 92, 1, 1 (2019). DOI: 10.1140/epjb/e2018-90452-6
- K. Kholiya, K. Pandey. J. Taibah Univer. Sci. 13, 1, 592 (2019). DOI: 10.1080/16583655.2019.1611369
- M. Goyal, B.R.K. Gupta. Mod. Phys. Lett. B 33, 26, 19503101 (2019). DOI: 10.1142/s021798491950310X
- M. Goyal. Chin. J. Phys. 66, 453 (2020). DOI: 10.1016/j.cjph.2020.05.002
- R.L. Jaiswal, B.K. Pandey, D. Mishra, H. Fatma. Int. J. Thermodynam. 24, 1, 1 (2021). DOI: 10.5541/ijot.869865
- X. Qi, N. Cai, S. Wang, B. Li. J. Appl. Phys. 128, 10, 105105 (2020). DOI: 10.1063/5.0022536
- D. Ikuta, E. Ohtani, H. Fukui, T. Sakamaki, D. Ishikawa, A.Q. Baron. Large density deficit of Earth's core revealed by a multi-megabar primary pressure scale. arXiv preprint 2021. arXiv:2104.02076. https://arxiv.org/ftp/arxiv/papers/2104/2104.02076.pdf
- C. Malica, A. Dal Corso. J. Phys.: Condens. Matter 33, 47, 475901 (2021). DOI: 10.1088/1361-648X/ac2041
- E.A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press, London (1961). 1333 p
- M.N. Magomedov. Techn. Phys. 58, 9, 1297 (2013). DOI: 10.1134/S106378421309020X
- L.A. Girifalco. Statistical Physics of Materials. Wiley and Sons Ltd., N.Y. (1973). 346 p
- M.N. Magomedov. Techn. Phys. 60, 11, 1619 (2015). DOI: 10.1134/S1063784215110195
- M.N. Magomedov. Techn. Phys. 65, 10, 1659 (2020). DOI: 10.1134/S1063784220100138
- M.N. Magomedov. Phys. Solid State 59, 6, 1085 (2017). DOI: 10.1134/S1063783417060142
- M.N. Magomedov. Techn. Phys. 64, 6, 834 (2019). DOI: 10.1134/S1063784219060100
- M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). DOI: 10.1134/S1063783420120197
- M.N. Magomedov. Phys. Met. Metallography 114, 3, 207 (2013). DOI: 10.1134/S0031918X13030113
- M. Matsui. J. Phys.: Conf. Ser. IOP Publ. 215, 1, 012197 (2010). DOI: 10.1088/1742-6596/215/1/012197
- X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang, B. Liu, T. Cui. Sci. Rep. 6, 19923 (2016). DOI: 10.1038/srep19923
- A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. J. Exp. Theor. Phys. 124, 3, 469 (2017). DOI: 10.1134/S1063776117030049
- D.K. Belashchenko. Phys.-Uspekhi 63, 12, 1161 (2020). DOI: 10.3367/UFNe.2020.01.038761
- M.N. Magomedov. Phys. Solid State 63, 9, 1595 (2021). DOI: 10.1134/S1063783421090250
- W.B. Holzapfel, M. Hartwig, W. Sievers. J. Phys. Chem. Ref. Data 30, 2, 515 (2001). DOI: 10.1063/1.1370170
- G.K. White, J.G. Collins. J. Low Temper. Phys. 7, 1, 43 (1972). DOI: 10.1007/BF00629120
- T. Tsuchiya. J. Geophys. Res. 108, B10, 2462 (2003). DOI: 10.1029/2003JB002446
- M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vov cadlo. J. Appl. Crystallography 51, 2, 470 (2018). DOI: 10.1107/S1600576718002248
- P.I. Dorogokupets, T.S. Sokolova, B.S. Danilov, K.D. Litasov. Geodynamics \& Tectonophysics 3, 2, 129 (2012). DOI: 10.5800/GT-2012-3-2-0067
- C. Wong, D.E. Schuele. J. Phys. Chem. Solids 29, 8, 1309 (1968). DOI: 10.1016/0022-3697(68)90183-2
- M.N. Magomedov. Phys. Solid State 45, 1, 32 (2003). DOI: 10.1134/1.1537405
- F.D. Murnaghan. Proc. Nat. Academy Sci. USA 30, 9, 244 (1944). DOI: 10.1073/pnas.30.9.244
- S.S. Batsanov. J. Phys. Chem. Solids 124, 327 (2019). DOI: 10.1016/j.jpcs.2018.06.002
- L.R. Fokin. High Temperature 58, 2, 173 (2020). DOI: 10.1134/S0018151X20020054
- L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar. Surf. Sci. 411, 1--2, 186 (1998). DOI: 10.1016/s0039-6028(98)00363-x
- Q. Jiang, H.M. Lu, M. Zhao. J. Phys.: Condens. Matter 16, 4, 521 (2004). DOI: 10.1088/0953-8984/16/4/001
- F. Aqra, A. Ayyad. Appl. Surf. Sci. 257, 15, 6372 (2011). DOI: 10.1016/j.apsusc.2011.01.123
- J. Wang, S.Q. Wang. Surf. Sci. 630, 216 (2014). DOI: 10.1016/j.susc.2014.08.017
- S. Schonecker, X. Li, B. Johansson, S.K. Kwon, L. Vitos. Sci. Rep. 5, 14860 (2015). DOI: 10.1038/srep14860
- R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, S.P. Ong. Sci. Data 3, 1, 1-13 (2016). DOI: 10.1038/sdata.2016.80
- S. De Waele, K. Lejaeghere, M. Sluydts, S. Cottenier. Phys. Rev. B 94, 23, 235418 (2016). DOI: 10.1103/PhysRevB.94.235418
- T. Cheng, D. Fang, Y. Yang. Appl. Surf. Sci. 393, 364 (2017). DOI: 10.1016/j.apsusc.2016.09.147
- A. Patra, J.E. Bates, J. Sun, J.P. Perdew. Proc. Nat. Academy Sci. USA 114, 44, E9188 (2017). DOI: 10.1073/pnas.1713320114
- V.P. Bokarev, G.Y. Krasnikov. Surf. Sci. 668, 73 (2018). https://doi.org/10.1016/j.susc.2017.10.020
- X. Zhang, W. Li, H. Kou, J. Shao, Y. Deng, X. Zhang, J. Ma, Y. Li, X. Zhang. J. Appl. Phys. 125, 18, 185105 (2019). DOI: 10.1063/1.5090301
- M.N. Magomedov. Nanotechnolog. Russ. 14, 1--2, 21 (2019). DOI: 10.1134/S1995078019010063
- W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). DOI: 10.1016/0039-6028(77)90442-3
- V.K. Kumikov, Kh.B. Khokonov. J. Appl. Phys. 54, 3, 1346 (1983). DOI: 10.1063/1.332209
- B.B. Alchagirov, T.M. Taova, Kh.B. Khokonov. Transact. of JWRI. Special Issue (Jpn) 30, 287 (2001). https://repository.exst.jaxa.jp/dspace/handle/a-is/48071
- E.N. Akhmedov. J. Phys.: Conf. Ser. 1348, 012002 (2019). DOI: 10.1088/1742-6596/1348/1/012002
- S.N. Zadumkin. Dokl. Akad. Nauk SSSR 112, 3, 453 (1957). .http://www.mathnet.ru/links/c97c74236a89a8ac731b021056 fa72ca/dan21559.pdf [in Russian]
- M. Zhao, W. Zheng, J. Li, Z. Wen, M. Gu, C.Q. Sun. Phys. Rev. B 75, 8, 085427 (2007). DOI: 10.1103/PhysRevB.75.085427
- M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron and Neutron Technique 6, 1, 86 (2012). DOI: 10.1134/S1027451012010132
- M.N. Magomedov. Phys. Solid State 62, 7, 1126 (2020). DOI: 10.1134/S1063783420070136
- M.N. Magomedov. FTT 64, 4, 485 (2022) (in Russian). DOI: 10.21883/FTT.2022.04.52189.240
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.