Physics of the Solid State
Volumes and Issues
Study of the FCC-Au properties in a wide range of temperatures and pressures
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
The properties of the FCC-of the gold crystal were calculated using an analytical method (without computer modeling) in the temperature range: T=10-1337 K and pressures: P=0-110 GPa. The following properties were calculated: state equation, Debye temperature, first and second Gruneisen parameters, elastic modulus (BT), thermal expansion coefficient (αp), isochoric (Cv) and isobaric (Cp) heat capacity, specific surface energy. Derivatives of these properties also have been calculated both by temperature along three isobars and by pressure along three isotherms. The obtained results showed good agreement with the other authors results. It was shown that there is a certain temperature TB in which the product α_pBT does not change during the crystal compression. At T>TB, the α_pBT function increases, and at T<TB, it decreases with an increase in pressure. For FCC-Au has been received T_B=132 K. It was shown that the isotherms of the baric derivative of elastic modulus B'(P) intersect at the point: P>21.58 GPa, and B'(P)=7.43. At P<21.58 GPa, the C'v(P) function increases, and at P>21.58 GPa, it decreases with increasing temperature. It was shown that the isotherm of the baric derivative of the isochoric heat capacity C'v(P) has a minimum, and the isotherm of the baric derivative of the isobaric heat capacity C'_p(P) has both a minimum and a maximum. Based on the obtained dependencies, some approximations, which are used to calculate the properties of the crystal under high P-T-conditions, have been analyzed. Keywords: gold, pressure, elastic modulus, thermal expansion, heat capacity, Debye temperature, Gruneisen parameter, surface energy.
  1. F. Birch. J. Geophys. Res. 57, 2, 227 (1952). DOI: 10.1029/JZ057i002p00227
  2. M.S. Anderson, C.A. Swenson. J. Phys. Chem. Solids 36, 2, 145 (1975). DOI: 10.1016/0022-3697(75)90004-9
  3. T. Yagi. J. Phys. Chem. Solids 39, 5, 563 (1978). DOI: 10.1016/0022-3697(78)90037-9
  4. J.L. Tallon. J. Phys. Chem. Solids 41, 8, 837 (1980). DOI: 10.1016/0022-3697(80)90028-1
  5. O.L. Anderson. Phys. Earth Planetary Interiors 22, 3--4, 165 (1980). DOI: 10.1016/0031-9201(80)90029-1
  6. O.L. Anderson, K. Zou. Phys. Chem. Minerals 16, 7, 642 (1989). DOI: 10.1007/BF00223312
  7. J. Shanker, M. Kumar. Phys. Status Solidi B 179, 2, 351 (1993). DOI: 10.1002/pssb.2221790209
  8. J. Rault. Eur. Phys. J. B 92, 1, 1 (2019). DOI: 10.1140/epjb/e2018-90452-6
  9. K. Kholiya, K. Pandey. J. Taibah Univer. Sci. 13, 1, 592 (2019). DOI: 10.1080/16583655.2019.1611369
  10. M. Goyal, B.R.K. Gupta. Mod. Phys. Lett. B 33, 26, 19503101 (2019). DOI: 10.1142/s021798491950310X
  11. M. Goyal. Chin. J. Phys. 66, 453 (2020). DOI: 10.1016/j.cjph.2020.05.002
  12. R.L. Jaiswal, B.K. Pandey, D. Mishra, H. Fatma. Int. J. Thermodynam. 24, 1, 1 (2021). DOI: 10.5541/ijot.869865
  13. X. Qi, N. Cai, S. Wang, B. Li. J. Appl. Phys. 128, 10, 105105 (2020). DOI: 10.1063/5.0022536
  14. D. Ikuta, E. Ohtani, H. Fukui, T. Sakamaki, D. Ishikawa, A.Q. Baron. Large density deficit of Earth's core revealed by a multi-megabar primary pressure scale. arXiv preprint 2021. arXiv:2104.02076. https://arxiv.org/ftp/arxiv/papers/2104/2104.02076.pdf
  15. C. Malica, A. Dal Corso. J. Phys.: Condens. Matter 33, 47, 475901 (2021). DOI: 10.1088/1361-648X/ac2041
  16. E.A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press, London (1961). 1333 p
  17. M.N. Magomedov. Techn. Phys. 58, 9, 1297 (2013). DOI: 10.1134/S106378421309020X
  18. L.A. Girifalco. Statistical Physics of Materials. Wiley and Sons Ltd., N.Y. (1973). 346 p
  19. M.N. Magomedov. Techn. Phys. 60, 11, 1619 (2015). DOI: 10.1134/S1063784215110195
  20. M.N. Magomedov. Techn. Phys. 65, 10, 1659 (2020). DOI: 10.1134/S1063784220100138
  21. M.N. Magomedov. Phys. Solid State 59, 6, 1085 (2017). DOI: 10.1134/S1063783417060142
  22. M.N. Magomedov. Techn. Phys. 64, 6, 834 (2019). DOI: 10.1134/S1063784219060100
  23. M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). DOI: 10.1134/S1063783420120197
  24. M.N. Magomedov. Phys. Met. Metallography 114, 3, 207 (2013). DOI: 10.1134/S0031918X13030113
  25. M. Matsui. J. Phys.: Conf. Ser. IOP Publ. 215, 1, 012197 (2010). DOI: 10.1088/1742-6596/215/1/012197
  26. X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang, B. Liu, T. Cui. Sci. Rep. 6, 19923 (2016). DOI: 10.1038/srep19923
  27. A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. J. Exp. Theor. Phys. 124, 3, 469 (2017). DOI: 10.1134/S1063776117030049
  28. D.K. Belashchenko. Phys.-Uspekhi 63, 12, 1161 (2020). DOI: 10.3367/UFNe.2020.01.038761
  29. M.N. Magomedov. Phys. Solid State 63, 9, 1595 (2021). DOI: 10.1134/S1063783421090250
  30. W.B. Holzapfel, M. Hartwig, W. Sievers. J. Phys. Chem. Ref. Data 30, 2, 515 (2001). DOI: 10.1063/1.1370170
  31. G.K. White, J.G. Collins. J. Low Temper. Phys. 7, 1, 43 (1972). DOI: 10.1007/BF00629120
  32. T. Tsuchiya. J. Geophys. Res. 108, B10, 2462 (2003). DOI: 10.1029/2003JB002446
  33. M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vov cadlo. J. Appl. Crystallography 51, 2, 470 (2018). DOI: 10.1107/S1600576718002248
  34. P.I. Dorogokupets, T.S. Sokolova, B.S. Danilov, K.D. Litasov. Geodynamics \& Tectonophysics 3, 2, 129 (2012). DOI: 10.5800/GT-2012-3-2-0067
  35. C. Wong, D.E. Schuele. J. Phys. Chem. Solids 29, 8, 1309 (1968). DOI: 10.1016/0022-3697(68)90183-2
  36. M.N. Magomedov. Phys. Solid State 45, 1, 32 (2003). DOI: 10.1134/1.1537405
  37. F.D. Murnaghan. Proc. Nat. Academy Sci. USA 30, 9, 244 (1944). DOI: 10.1073/pnas.30.9.244
  38. S.S. Batsanov. J. Phys. Chem. Solids 124, 327 (2019). DOI: 10.1016/j.jpcs.2018.06.002
  39. L.R. Fokin. High Temperature 58, 2, 173 (2020). DOI: 10.1134/S0018151X20020054
  40. L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar. Surf. Sci. 411, 1--2, 186 (1998). DOI: 10.1016/s0039-6028(98)00363-x
  41. Q. Jiang, H.M. Lu, M. Zhao. J. Phys.: Condens. Matter 16, 4, 521 (2004). DOI: 10.1088/0953-8984/16/4/001
  42. F. Aqra, A. Ayyad. Appl. Surf. Sci. 257, 15, 6372 (2011). DOI: 10.1016/j.apsusc.2011.01.123
  43. J. Wang, S.Q. Wang. Surf. Sci. 630, 216 (2014). DOI: 10.1016/j.susc.2014.08.017
  44. S. Schonecker, X. Li, B. Johansson, S.K. Kwon, L. Vitos. Sci. Rep. 5, 14860 (2015). DOI: 10.1038/srep14860
  45. R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, S.P. Ong. Sci. Data 3, 1, 1-13 (2016). DOI: 10.1038/sdata.2016.80
  46. S. De Waele, K. Lejaeghere, M. Sluydts, S. Cottenier. Phys. Rev. B 94, 23, 235418 (2016). DOI: 10.1103/PhysRevB.94.235418
  47. T. Cheng, D. Fang, Y. Yang. Appl. Surf. Sci. 393, 364 (2017). DOI: 10.1016/j.apsusc.2016.09.147
  48. A. Patra, J.E. Bates, J. Sun, J.P. Perdew. Proc. Nat. Academy Sci. USA 114, 44, E9188 (2017). DOI: 10.1073/pnas.1713320114
  49. V.P. Bokarev, G.Y. Krasnikov. Surf. Sci. 668, 73 (2018). https://doi.org/10.1016/j.susc.2017.10.020
  50. X. Zhang, W. Li, H. Kou, J. Shao, Y. Deng, X. Zhang, J. Ma, Y. Li, X. Zhang. J. Appl. Phys. 125, 18, 185105 (2019). DOI: 10.1063/1.5090301
  51. M.N. Magomedov. Nanotechnolog. Russ. 14, 1--2, 21 (2019). DOI: 10.1134/S1995078019010063
  52. W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). DOI: 10.1016/0039-6028(77)90442-3
  53. V.K. Kumikov, Kh.B. Khokonov. J. Appl. Phys. 54, 3, 1346 (1983). DOI: 10.1063/1.332209
  54. B.B. Alchagirov, T.M. Taova, Kh.B. Khokonov. Transact. of JWRI. Special Issue (Jpn) 30, 287 (2001). https://repository.exst.jaxa.jp/dspace/handle/a-is/48071
  55. E.N. Akhmedov. J. Phys.: Conf. Ser. 1348, 012002 (2019). DOI: 10.1088/1742-6596/1348/1/012002
  56. S.N. Zadumkin. Dokl. Akad. Nauk SSSR 112, 3, 453 (1957). .http://www.mathnet.ru/links/c97c74236a89a8ac731b021056 fa72ca/dan21559.pdf [in Russian]
  57. M. Zhao, W. Zheng, J. Li, Z. Wen, M. Gu, C.Q. Sun. Phys. Rev. B 75, 8, 085427 (2007). DOI: 10.1103/PhysRevB.75.085427
  58. M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron and Neutron Technique 6, 1, 86 (2012). DOI: 10.1134/S1027451012010132
  59. M.N. Magomedov. Phys. Solid State 62, 7, 1126 (2020). DOI: 10.1134/S1063783420070136
  60. M.N. Magomedov. FTT 64, 4, 485 (2022) (in Russian). DOI: 10.21883/FTT.2022.04.52189.240

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru