Structure and magnetic properties of amorphous and nanocrystalline Co-Fe-B-(Nb, Ti) alloys
Chirkova V. V. 1, Volkov N. A.1, Sholin I. A.1, Abrosimova G. E.1, Aronin A. S.1
1Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
Email: valyffkin@issp.ac.ru
The structure and magnetic properties of amorphous and nanocrystalline Co56Fe16B20X8 (X=Nb, Ti) alloys have been studied by X-ray diffraction and vibrating sample magnetometry. It is shown that the saturation magnetization of the amorphous Co56Fe16B20Ti8 alloy is higher than that of the Co56Fe16B20Ti8 alloy. The temperature dependence of the saturation magnetization of amorphous alloys is measured and it is shown that the saturation magnetization of the Co56Fe16B20Ti8 alloy decreases with temperature more slowly than the magnetization of the Co56Fe16B20Nb8 alloy. Crystallization of amorphous alloys leads to a decrease in the saturation magnetization of both alloys. During crystallization, BCC nanocrystals are formed in the Co56Fe16B20Nb8 alloy and multiphase structure is formed in the Co56Fe16B20Ti8 alloy. Keywords: amorphous phase, crystallization, nanocrystals, magnetic properties.
- M.E. McHenry, M.A. Willard, D.E. Laughlin. Prog. Mater. Sci. 44, 4, 291 (1999). https://doi.org/10.1016/S0079-6425(99)00002-X
- B. Hernando, M.L. Sanchez, V.M. Prida, M. Tejedor, M. Vazquez. J. Appl. Phys. 90, 9, 4783 (2001). http://dx.doi.org/10.1063/1.1408594
- G. Herzer. Acta Mater. 61, 3, 718, (2013). https://doi.org/10.1016/j.actamat.2012.10.040
- C. Moron, C. Cabrera, A. Moron, A. Garci a, M. Gonzalez. Sensors 15, 11, 28340 (2015). http://dx.doi.org/10.3390/s151128340
- R. Xiang, Sh. Zhou, B. Dong, G. Zhang, Z. Li, Y. Wang, Ch. Chang. Progr. In Natural Sci. Mater. Int. 24, 6, 649 (2014). http://dx.doi.org/10.1016/j.pnsc.2014.10.002
- C.F. Conde, J.S. Blazquez, A. Conde. In: Properties and Application of Nanocrystalline Alloys from amorphous Precursor / Ed. B. Idzikowski. Kluwer Academic Publ., The Netherlands 184 (2005). P. 111
- V. Chunchu, G. Markandeyulu. J. Appl. Phys. 113, 17, 17A321 (2013). https://doi.org/10.1063/1.4795800
- G.E. Abrosimova, A.S. Aronin, Yu.P. Kabanov, D.V. Matveev, V.V. Molokanov. FTT 46, 5, 858 (2004) (in Russian). https://doi.org/10.1134/1.1744967
- G.E. Abrosimova, A.S. Aronin, Yu.P. Kabanov, D.V. Matveev, V.V. Molokanov, O.G. Rybchenko. FTT 46, 12, 2158 (2004) (in Russian). https://doi.org/10.1134/1.1841387
- V. Cremaschi, B. Arcondo, H. Sirkin, M. Vazquez, A. Asenjo, J.M. Garcia, G. Abrosimova, A. Aronin. J. Mater. Res. 15, 9, 1936 (2000). https://doi.org/10.1557/JMR.2000.0279
- M. Ohta, Y. Yoshizawa. Jpn. J. Appl. Phys. 46, 6L, 062517 (2007). http://dx.doi.org/10.1143/JJAP.46.L477
- Zs. Kovacs, P. Henits, S. Hobor, A. Revesz. Rev. Adv. Mater. Sci., 18, 7, 593 (2008). https://www.ipme.ru/e-journals/RAMS/no_71808/kovacs.pdf
- G. Abrosimova, A. Aronin, O. Barkalov, D. Matveev, O. Rybchenko, V. Maslov, V. Tkach. FTT 53, 2, 215 (2011) (in Russian). https://doi.org/10.1134/S1063783411020028
- A.N. Petrova, I.G. Brodova, O.A. Plekhov, O.B. Naimark, E.V. Shorokhov. ZhTF 84, 7, 44 (2014) (in Russian). https://doi.org/10.1134/S1063784214070226
- G.E. Abrosimova, A.S. Aronin, N.A. Volkov. FTT 61, 7, 1352 (2019) (in Russian). https://doi.org/10.21883/FTT.2019.07.47850.415
- N.N. Sitnikov, A.V. Shelyakov, R.V. Sundeev, I.A. Khabibullina. FTT 62, 5, 649 (2020) (in Russian). https://doi.org/10.21883/FTT.2020.05.49223.14M
- G. Abrosimova, N. Volkov, N. Orlova, A. Aronin. Mater. Lett. 219, 97 (2018). https://doi.org/10.1016/j.matlet.2018.02.069
- A. Makino, T. Bitoh, A. Inoue, T. Masumoto. J. Appl. Phys. 81, 6, 2736 (1997). http://dx.doi.org/10.1063/1.363976
- K. Hono, K. Hiraga, Q. Wang, A. Inoue, T. Sakurai. Acta Met. Mater. 40, 9, 2137 (1992). https://doi.org/10.1016/0956-7151(92)90131-W
- H.A. Shivaee, A. Castellero, P. Rizzi, P. Tiberto, H. Hosseini, M. Baricco. Met. Mater. Int. 19, 4, 643 (2013). https://doi.org/10.1007/s12540-013-4003-9
- Y. Yoshizawa, S. Oguma, K. Yamauchi. J. Appl. Phys. 64, 10, 6044 (1988). https://doi.org/10.1063/1.342149
- G. Herzer. In: Magnetic Hysteresis in Novel Materials / Ed. G.C. Hadjipanayis. Kluwer Academic Publ., The Netherlands 338 (1997). P. 711
- J. Han, J. Hong, S. Kwon, H. Choi-Yim. J. Met. 11, 2, 304 (2021). https://doi.org/10.3390/met11020304
- J. Oh, H. Choi-Yim. J. Korean Phys. Soc. 69, 12, 1813 (2016). http://dx.doi.org/10.3938/jkps.69.1813
- N.V. Ershov, V.I. Fedorov, Yu.P. Chernenkov, V.A. Lukshina, D.A. Shishkin. FTT 59, 9, 1724 (2017) (in Russian). http://dx.doi.org/10.21883/FTT.2017.09.44843.078
- M. Veligatla, S. Katakam, S. Das, N. Dahotre, R. Gopalan, D. Prabhu, D.A. Babu, H. Choi-Yim, S. Mukherjee. Met. Mater. Trans. A 46, 3, 1019 (2015). http://dx.doi.org/10.1007/s11661-014-2714-2
- C.-S. Yoo, S.K. Lim, C.S. Yoon, C.K. Kim. J. Alloys Compd. 359, 1-2, 261 (2003). http://dx.doi.org/10.1016%2FS0925-8388(03)00177-4
- D. Huang, Y. Li, Y. Yang, Z. Zhu, W. Zhang. J. Alloys Compd. 843, 154862 (2020). https://doi.org/10.1016/j.jallcom.2020.154862
- Z.J. Yan, B.R. Bian, Y. Hu, S.E. Dang, L.T. Xia, Y.M. Wang. J. Magn. Magn. Mater. 322, 21, 3359 (2010). http://dx.doi.org/10.1016/j.jmmm.2010.06.027
- D. Muraca, V. Cremaschi, J. Moya, H. Sirkin. J. Magn. Magn. Mater. 320, 9, 1639 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.01.034
- V. Cremaschi, A. Saad, J. Moya, B. Arcondo, H. Sirkin. Phys. B: Condens. Matter 320, 1-4, 281 (2002). https://doi.org/10.1016/S0921-4526(02)00715-9
- S. Kwon, S. Kim, H. Choi-Yim. J. Korean Phys. Soc. 72, 1, 171 (2018). http://dx.doi.org/10.3938/jkps.72.171
- G.E. Abrosimova, I.M. Shmytko. Zav. labor. Diagnostika materialov, 84 6, 34 (2018) (in Russian). http://dx.doi.org/10.26896/1028-6861-2018-84-6-34-37
- G.E. Abrosimova, N.A. Volkov, E.A. Pershina, V.V. Chirkova, I.A. Sholin, A.S. Aronin. J. Non-Cryst. Solids 565, 120864 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120864
- . Madej, L. Bednarska, V. Nosenko, B. Kotur, A. Chrobak, G. Haneczok. Chem. Met. Alloys 1, 3/4, 333 (2008). http://dx.doi.org/10.30970/cma1.0072
- N.V. Ilyin, V.S. Komogortsev, G.S. Kraynova, V.A. Ivanov, I.A. Tkachenko, V.V. Tkachev, V.S. Plotnikov, R .S. Iskhakov. Izv. RAN. Ser. fiz. 85, 9, 1234 (2021) (in Russian). https://doi.org/10.31857/S0367676521090143
- A. Lovas, L.F. Kiss, I. Balogh. J. Magn. Magn. Mater. 215-216, 463 (2000). https://doi.org/10.1016/S0304-8853(00)00189-X
- H. Atmani, S. Grognet, J. Teillet. J. Non-Cryst. Solids 290, 2-3, 194 (2001). https://doi.org/10.1016/S0022-3093(01)00737-2
- J. Han, S. Kwon, S. Sohn, J. Schroers, H. Choi-Yim. J. Met. 10, 10, 1297 (2020). https://doi.org/10.3390/met10101297
- C.C. Tsuei, H. Lilienthal. Phys. Rev. B Condens. Matter 13, 11, 4899 (1976). https://doi.org/10.1103/PhysRevB.13.4899
- L.M. Bednarska, Yu.K. Horelenko, M.O. Kovbuz, O.M. Hertsyk, B.Ya. Kotur, V.K. Nosenko. Mater. Sci. 39, 2, 291 (2003). http://dx.doi.org/10.1023/B:MASC.0000010283.76730.8b
- R. Onodera, S. Kimura, K. Watanabe, S. Lee, Y. Yokoyama, A. Makino, K. Koyama. Mater. Trans. 54, 2, 188 (2013). http://dx.doi.org/10.2320/matertrans.M2012242
- H.J. Ma, J.T. Zhang, G.H. Li, W.X. Zhang, W.M. Wang. J. Alloys Compd. 501, 2, 227 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.04.075
- P. Vojtani k, R. Andrejco, R. Varga, J. Kovavc, K. Csach, A. Lovas. Czechoslov. J. Phys. 54, 4, 113 (2004). https://doi.org/10.1007/s10582-004-0042-2
- G. Abrosimova, N. Volkov, V. Chirkova, A. Aronin. 297, 129996 (2021). https://doi.org/10.1016/j.matlet.2021.129996
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.