Features of the formation of radiation spectra of two-particle nanosystems in a magnetic field
Kucherenko M.G. 1, Nalbandyan V. M. 1, Chmereva T. M. 1
1Center of Laser and Information Biophysics, Orenburg State University, Orenburg, Russia
Email: clibph@yandex.ru, nalband1@yandex.ru

PDF
A spectral model of luminescence of the two-component exciton-activated semiconductor quantum dot (QD) layered plasmon composite nanoparticle (CNP) with a dielectric core and a conductive shell in an external magnetic field is constructed, taking into account the inhomogeneity of the quasi-stationary electric field generated by QD in the CNP region, outside the framework of the approximation of the dipole polarizability of the CNP. The tensor formalism of describing the characteristics of the field in each of the layers of the CNP, as well as outside the CNP, is used. It is established that with a change in the structure of the nanocomposite, the parameters of its core or shell layer, the spectral response of the system to external magnetic field action changes. It is shown that the special form of the response is associated with the characteristic magnetic properties of the nanoparticle components acquired (under the action of the field). Keywords: plasma layered nanoparticle, spherical quantum dot, magnetic field, luminescence of a two-particle complex.
  1. V.I. Balykin, P.N. Melentiev. Phys. Usp., 61, 133 (2018). DOI: 10.3367/UFNe.2017.06.038163
  2. S.I. Lepeshov, A.E. Krasnok, P.A. Belov, A.E. Miroshnichenko. Phys. Usp., 61, 1035 (2018). DOI: 10.3367/UFNe.2017.12.038275
  3. E. Cao, Lin W., M. Sun, W. Liang, Y. Song. Nanophotonics, 7 (1), 145 (2018). DOI: 10.1515/nanoph-2017-0059
  4. A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun'ko. J. Mater. Chem. A, 5 (26), 13252 (2017). DOI: 10.1039/C7TA02076G
  5. S. Yan, X. Zhu, J. Dong, Y. Ding, S. Xiao. Nanophotonics, 9 (7), 1877 (2020). DOI: 10.1515/nanoph-2020-0074
  6. M. Achermann. J. Phys. Chem. Lett., 1, 2837. DOI: 10.1021/JZ101102E
  7. E. Cohen-Hoshen, G.W. Bryant, I. Pinkas, J. Sperling, I. Bar-Joseph. Nano Letters, 12 (8), 4260 (2012). DOI: 10.1021/nl301917d
  8. J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, H. Xu. ACS Nano, 12 (10), 10393 (2018). DOI: 10.1021/acsnano.8b05880
  9. T.J. Antosiewicz, S.P. Apell, T. Shegai. ACS Photonics, 1 (5), 454 (2014). DOI: 10.1021/ph500032d
  10. O. Bitton, S.N. Gupta, G. Haran. Nanophotonics, 8 (4), 559 (2019). DOI: 10.1515/nanoph-2018-0218
  11. M.G. Kucherenko, V.M. Nalbandyan, T.M. Chmereva. J. Opt. Technol., 88 (9), 489 (2021). DOI: 10.1364/JOT.88.000489
  12. M.G. Kucherenko, V.M. Nalbandyan. Opt. Spectrosc., 128 (11), 1910 (2020). DOI: 10.1134/S0030400X20110156
  13. P. Rajput, M.S. Shishodia Plasmonics., 15 (6), 2081 (2020). DOI: 10.1007/s11468-020-01208-5
  14. H. Yanagawa, A. Inoue, H. Sugimoto, M. Shioi, M. Fujii. J. Appl. Phys., 122, 223101 (2017). DOI: 10.1063/1.5001106
  15. D.V. Guzatov, S.V. Gaponenko. Doklady Nats. akad. nauk Belarusi, 63 (6), 689 (2020) (in Russian). DOI: 10.29235/1561-8323-2019-63-6-689-694
  16. A.K. Tobias, M. Jones. The J. Phys. Chem. C, 123 (2), 1389 (2018). DOI: 10.1021/acs.jpcc.8b09108
  17. M.G. Kucherenko, V.M. Nalbandyan. Vestnik OGU, 188 (13), 156 (2015) (in Russian)
  18. M.G. Kucherenko, V.M. Nalbandyan. Russian Physics J., 59 (9), 1425 (2017). DOI: 10.1007/s11182-017-0926-9
  19. A.V. Korotun, A.A. Koval. Opt. i spektr., 127 (12), 1032 (2019) (in Russian). DOI: 10.21883/OS.2019.12.48705.133-19
  20. A.V. Korotun, V.V. Pogosov. FTT, 63 (1), 120 (2021) (in Russian). DOI: 10.21883/FTT.2021.01.50409.178
  21. P. Li, K. Du, F. Lu, K. Gao, F. Xiao, W. Zhang, T. Mei. J. Phys. Chem. C, 124 (35), 19252 (2020). DOI: 10.1021/acs.jpcc.0c05661
  22. I.Y. Goliney, V.I. Sugakov, L. Valkunas, G.V. Vertsimakha. Chem. Phys., 404, 116 (2012). DOI: 10.1016/j.chemphys.2012.03.011
  23. K. Sakai, K. Nomura, T. Yamamoto, K. Sasaki. Scientific Reports, 5 (1), 1 (2015). DOI: 10.1038/srep08431
  24. Z.W. Ma, J.P. Zhang, X. Wang, Y. Yu, J.B. Han, G.H. Du, L. Li. Optics Letter, 38 (19), 3754 (2013). DOI: 10.1364/OL.38.003754
  25. C.M. Briskina, A.P. Tarasov, V.M. Markushev, M.A. Shiryaev. J. Nanophotonics. 12 (4), 043506 (2018). DOI: 10.1117/1.JNP.12.043506
  26. Ch.M. Briskina, A.P. Tarasov, V.M. Markushev, M.A. Shiryaev. Zhurn. priklad. spektrosk., 85 (6), 1018 (2018) (in Russian)
  27. M.G. Kucherenko, V.M. Nalbandyan. Physics Procedia, 73, 136 (2015). DOI: 10.1016/j.phpro.2015.09.134
  28. V.L. Ginzburg, A.A. Rukhadze. Volny v magnitoaktivnoy plazme (Nauka, M., 1975) (in Russian)
  29. M.G. Kucherenko, V.M. Nalbandyan. J. Opt. Technol., 85 (9), 524 (2018). DOI: 10.1364/JOT.85.000524
  30. D.A. Varshalovich, B.K. Khersonskiy, E.V. Orlenko, A.N. Moskalev. Kvantovaya teoriya uglovogo momenta i ee prilozheniya. V. 1 (Fizmatlit, M., 2017) (in Russian)
  31. V.M. Agranovich, D.M. Basko. Pis'ma v ZhETF, 69 (3), 232 (1999) (in Russian)
  32. M.G. Kucherenko, I.R. Alimbekov, P.P. Neyasov. Khim. fizika i mezoskopiya, 23 (3), 272 (2021) (in Russian). DOI: 10.15350/17270529.2021.3.25
  33. V.V. Klimov. Nanoplazmonika (Fizmatlit, M., 2009) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru