Polymer nanospheres containing CdSe/ZnS quantum dots and photochromic diaryletenes with photoswitchable luminescence
Karpach P. V.1, Shcherbovich A. A.2,3, Vasilyuk G. T.1, Stepuro V. I.1, Maskevich A. A.1, Ayt A. O.4, Venidiktova O. V.4, Barachevsky V. A.4, Maskevich S. A.3, Artemiev M. V.5
1Yanka Kupala Grodno State University, Grodno, Belarus
2B.I.Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
3Belarusian State University, ISEI BSU, Minsk, Belarus
4Photochemistry Center, FSRC "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
5Research Institute for Physical Chemical Problems of the Belarussian State University, Minsk, Belarus
Email: pavel_karpach@mail.ru, scherbovich.a.a@gmail.com, vasilyuk@grsu.by, stsiapura@gmail.com, amaskevich@grsu.by, ao_ait@mail.ru, wolga.photonics@inbox.ru, barva@photonics.ru, sergei.maskevich@gmail.com, m_artemyev@yahoo.com

PDF
A study was carried out and a comparative analysis of the spectral-kinetic (absorption and fluorescent) characteristics of nanospheres containing luminescent inorganic quantum dots (QDs) CdSe/ZnS, covered with an amphiphilic polymer shell, which ensures the stability of nanospheres in aqueous colloidal solutions and the possibility of introducing into them hydrophobic photochromic diarylethene molecules with different structure. Photoinduced reversible isomerization of diarylethene molecules causes modulation of the photoluminescence signal of quantum dots, including through the control of the efficiency of resonant energy transfer (FRET) from quantum dots to the cyclic isomer of diarylethene. The FRET efficiency turned out to be the highest in nanospheres with DAE2 and DAE4. The value of the quality index (QF) of the FRET photomodulator (which shows the efficiency of modulation of the quantum yield of QD photoluminescence), introduced in this work, varies for samples with different diarylethenes from 0.003 (for DAE1) to 0.09 (for DAE2). Nanospheres containing luminescent nanoparticles of various shapes can be used in the development of luminescent photocontrolled panels, fluorescent markers, etc. Keywords: quantum dots, fluorescence, Forster resonance energy transfer, nanocomposites, photochromism, diarylethenes.
  1. Molecular switches, ed. by B.L. Feringa (Wiley-VCH, Weinheim, 2001)
  2. M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake. Chem. Rev., 114, 12174 (2014). DOI: 10.1021/cr500249p
  3. J. Zhang, Q. Zou, H. Tian. Adv. Mater., 25, 378 (2013). DOI: 10.1002/adma.201201521
  4. R. Klajn, J.F. Stoddart, B.A. Grzybowski. Chem. Soc. Rev., 39, 2203 (2010). DOI: 10.1039/B920377J
  5. Y. Hasegawa, T. Nakagawa, T. Kawai. Coord. Chem. Rev., 254, 2643 (2010). DOI: 10.1016/j.ccr.2009.12.036
  6. J. Cusido, E. Deniz, F.M. Raymo. Eur. J. Org. Chem., 2009 (13), 2031 (2009). DOI: 10.1002/ejoc.200801244
  7. F.M. Raymo, M. Tomasulo. J. Phys. Chem. A, 109, 7343 (2005). DOI: 10.1021/jp052440o
  8. S.A. Di az, G.O. Menendez, M.H. Etchehon, L. Giordano, T.M. Jovin, E.A. Jares-Erijman. ACS Nano, 5, 2795 (2011). DOI: 10.1021/nn103243c
  9. I. Yildiz, E. Deniz, F.M. Raymo. Chem. Soc. Rev., 38, 1859 (2009). DOI: 10.1039/B804151M
  10. I. Yildiz, M. Tomasulo, F.M. Raymo. J. Mater. Chem., 18, 5577 (2008). DOI: 10.1039/B809952A
  11. M. Tomasulo, I. Yildiz, F.M. Raymo. Inorg. Chim. Acta, 360, 938 (2007). DOI: 10.1016/j.ica.2006.07.029
  12. W.H. Binder, R. Sachsenhofer, C.J. Straif, R. Zirbs. J. Mater. Chem., 17, 2125 (2007). DOI: 10.1039/B618510J
  13. M. Tomasulo, I. Yildiz, S.L. Kaanumalle, F.M. Raymo. Langmuir, 22, 10284 (2006). DOI: 10.1021/la0618014
  14. M. Tomasulo, I. Yildiz, F.M. Raymo. J. Phys. Chem. B, 110, 3853 (2006). DOI: 10.1021/jp060185h
  15. M. Tomasulo, I. Yildiz, F.M. Raymo. Aust. J. Chem., 59, 175 (2006). DOI: 10.1071/ch05332
  16. E. Jares-Erijman, L. Giordano, C. Spagnuolo, K. Lidke, T.M. Jovin. Mol. Cryst. Liq. Cryst., 430, 257 (2005). DOI: 10.1080/15421400590946479
  17. L.Y. Zhu, M.-Q. Zhu, J.K. Hurst, A.D. Q.Li. J. Am. Chem. Soc., 127, 8968 (2005). DOI: 10.1021/ja0423421
  18. I.L. Medintz, S.A. Trammell, H. Mattoussi, J.M. Mauro. J. Am. Chem. Soc., 126, 30 (2004). DOI: 10.1021/ja037970h
  19. L. Giordano, T.M. Jovin, M. Irie, E.A. Jares-Erijman. J. Am. Chem. Soc., 124, 7481 (2002). DOI: 10.1021/ja016969k
  20. V.A. Barachevsky, O.I. Kobeleva, A.O. Ayt, A.M. Gorelik, T.M. Valova, M.M. Krayushkin, V.N. Yarovenko, K.S. Levchenko, V.V. Kiyko, G.T. Vasilyuk. Opt. Mater., 35, 1805 (2013). DOI: 10.1016/j.optmat.2013.03.005
  21. V.A. Barachevsky. Org. Photon. Photovolt., 3 (1), 8 (2015). DOI: 10.1515/oph-2015-0003
  22. V.A. Barachevsky. Crystallogr. Rep., 63 (2), 271 (2018). DOI: 10.1134/S1063774518020025
  23. V.A. Barachevsky. J. Photochem Photobiol. A. Chemistry, 354, 61 (2018). DOI: 10.1016/j.jphotochem.2017.06.034
  24. V.A. Barachevsky, O.I. Kobeleva, O.V. Venidiktova, A.O. Ait, G.T. Vasilyuk, S.A. Maskevich, M.M. Krayushkin. Kristallografiya, (in Russian). 64 (4), 820 (2019). [V.A. Barachevsky. Crystallogr. Rep., 64 (5), 823 (2019). DOI: 10.1134/S1063774519050055]
  25. V.A. Barachevsky, M.M. Krayushkin, V.V. Kiyko. Photon-Working Switches, ed. by Y. Yokoyama, K. Nakatani (Springer, Japan KK, 2017), p. 181--207
  26. V.A. Barachevsky. Cur. Chin. Sci. Smart Mater., 1 (2), 241 (2021). DOI: 10.2174/2210298101666210114100325
  27. V.A. Barachevsky, O.V. Venidiktova, T.M. Valova, A.M. Gorelik, R. Vasiliev, A. Khuzin, A.R. Tuktarov, P.V. Karpach, V.I. Stsiapura, G.T. Vasilyuk, S.A. Maskevich. Photochem. Photobiol. Sci., 18, 2661 (2019). DOI: 10.1039/C9PP00341J
  28. P.V. Karpach, A.A. Scherbovich, G.T. Vasilyuk, V.I. Stsiapura, A.O. Ayt, V.A. Barachevsky, A.R. Tuktarov, A.A. Khuzin, S.A. Maskevich. J. Fluoresc., 29 (6), 1311 (2019). DOI: 10.1007/s10895-019-02455-4
  29. A.A. Scherbovich, S.A. Maskevich, P.V. Karpach, G.T. Vasilyuk, V.I. Stsiapura, O.V. Venidiktova, A.O. Ayt, V.A. Barachevsky, A.A. Khuzin, A.R. Tuktarov, M. Artemyev. J. Phys. Chem. C, 124, 27064 (2020). DOI: 10.1021/acs.jpcc.0c06651
  30. A. Fedosyuk, A. Radchanka, A. Antanovich, A. Prudnikau, M.A. Kvach, V. Shmanai, M. Artemyev. Langmuir, 32 (8), 1955 (2016). DOI: 10.1021/acs.langmuir.5b04602
  31. A.A. Maskevich, V.I. Stepuro, S.A. Kurguzenkov, A.V. Lavysh. Vest. Grodn. gos. universiteta, 3 (159), 107 (2013) (in Russian)
  32. D.V. O'Connor, D. Phillips. Time-correlated Single Photon Counting (Acad. Press, N.Y., 1984)
  33. W.W. Yu, L. Qu, W. Guo, X. Peng. Chem. Mater., 15 (14), 2854 (2003). DOI: 10.1021/cm034081k

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru