Plasmon-activated Forster energy transfer in molecular systems
Ibrayev N. Kh. 1, Kucherenko M. G. 2, Temirbayeva D. A. 1, Seliverstova E. V. 1
1Institute of Molecular Nanophotonics, Buketov Karaganda State University, Karaganda, Kazakhstan
2Orenburg State University, Orenburg, Russia
Email: niazibrayev@mail.ru, clibph@yandex.ru, dilara.temirbayeva@gmail.com, genia_sv@mail.ru

PDF
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein-nile red (NR) and rhodamine B-NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein-nile red pair than for the rhodamine B-nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs. Keywords: energy transfer, silver nanoparticles, plasmon, model
  1. L. Loura. Front. Physiol., 2, 82 (2011). DOI: 10.3389/fphys.2011.00082
  2. K. Quan, C. Yi, X. Yang, X. He, J. Huang, K. Wang. Trends Anal. Chem., 124, 115784 (2020). DOI: 10.1016/j.trac.2019.115784
  3. A.K. Kirsch, V. Subramaniam, A. Jenei, T.M. Jovin. J. Microsc., 194, 448 (1999). DOI: 10.1046/j.1365-2818.1999.0
  4. Y.J. Jang, D. Kawaguchi, S. Yamaguchi, S. Lee, J.W. Lim, H. Kim, K. Tanaka, D.H. Kim. J. Power Sources, 438, 227031 (2019). DOI: 10.1016/j.jpowsour.2019.227031
  5. N. Ibrayev, E. Seliverstova, A. Aimukhanov, T. Serikov. Mol. Cryst. Liq. Cryst., 589, 202 (2014). DOI: 10.1080/15421406.2013.872827
  6. N. Ibrayev, E. Seliverstova, N. Nuraje, A. Ishchenko. Mat. Sci. Semicond. Processing, 31, 358 (2015). DOI: 10.1016/j.mssp.2014.12.006
  7. N. Aissaoui, K. Moth-Poulsen, M. Kall, P. Johansson, L.M. Wilhelmsson, B. Albinsson. Nanoscale, 9, 673 (2017). DOI: 10.1039/C6NR04852H
  8. C.L. Cortes, Z. Jacob. Opt. Express, 26, 19371 (2018). DOI: 10.1364/oe.26.019371
  9. E.V. Seliverstova, D.A. Temirbayeva, N.Kh. Ibrayev, A.A. Ishchenko. Theor. Exp. Chem., 55, 115 (2019). DOI: 10.1007/s11237-019-09602-9
  10. D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, V. Krachmalnicoff. Phys. Rev. Lett., 116, 037401 (2016). DOI: 10.1103/PhysRevLett.116.037401
  11. L. Cui, L. Zhang, H. Zeng. Nanomaterials, 11, 2927 (2021). DOI: 10.3390/nano11112927
  12. S. Saini, H. Singh, B. Bagchi. J. Chem. Sci., 118, 23 (2006). DOI: 10.1007/bf02708762
  13. R. Mattew, M.C. Claire, Z. Jie, L. Weiyang, H.M. Christine, Z. Qiang, Q. Dong, X. Younan. Chem. Rev., 111, 3669 (2011). DOI: 10.1021/cr100275d
  14. Y. Lee, S.H. Lee, S. Park, C. Park, K. SupLee, J. Kim, J. Joo. Synth. Metals, 187, 130 (2014). DOI: 10.1016/j.synthmet.2013.11.005
  15. Z. Sun, S. Liu, Z. Liu, W. Qin, D. Chen, G. Xu, C. Wu. Opt. Lett., 41, 2370 (2016). DOI: 10.1364/ol.41.002370
  16. D.H. Park, M.S. Kim, J. Joo. Chem. Soc. Rev., 39, 2439 (2010). DOI: 10.1039/b907993a
  17. J. Zhang, Y. Fu, J.R. Lakowicz. J. Phys. Chem., 111, 50 (2007). DOI: 10.1021/jp062665e
  18. C. Ni, S. Kuo, Z. Li, S. Wu, R. Wu, C. Chen, C. Yang. Opt. Express, 29, 4067 (2021). DOI: 10.1364/OE.415679
  19. K. Rustomji, M. Dubois, B. Kuhlmey, C.M. Sterke, S. Enoch, R. Abdeddaim, J. Wenger. Phys. Rev. X, 9, 011041 (2019). DOI: 10.1103/PhysRevX.9.011041
  20. A. Konrad, M. Metzger, A.M. Kern, M. Brecht, A.J. Meixner. Nanoscale, 7, 10204 (2015). DOI: 10.1039/c5nr02027a
  21. L. Zhao, T. Ming, L. Shao, H. Chen, J. Wang. J. Phys. Chem., 116, 8287 (2012). DOI: 10.1021/jp300916a
  22. X.M. Hua, J.I. Gersten, A. Nitzan. J. Chem. Phys., 83 (7), 3650 (1985). DOI: 10.1063/1.449120
  23. M.G. Kucherenko, V.N. Stepanov, N.Y. Kruchinin. Opt. Spectrosc., 118 (1), 103 (2015). DOI: 10.1134/S0030400X15010154
  24. M.G. Kucherenko, T.M. Chmereva, D.A. Kislov. High Energy Chem., 43 (7), 587 (2009). DOI: 10.1134/s0018143909070157
  25. M.G. Kucherenko, D.A. Kislov. J. Photochem. Photobiol. A, 354, 25 (2018). DOI: 10.1016/j.jphotochem.2017.1
  26. T.M. Chmereva, M.G. Kucherenko. Opt. Spectrosc., 110 (5), 767 (2011). DOI: 10.1134/s0030400x11040084
  27. N. Ibrayev, E. Seliverstova, N. Zhumabay, D. Temirbayeva. J. Lumin., 214, 116594 (2019). DOI: 10.1016/j.jlumin.2019.116594
  28. N.A. Efremov, S.I. Pokutnii. Phys. Solid State, 35 (5), 575 (1993)
  29. D.A. Kislov, M.G. Kucherenko. Opt. Spectrosc., 117 (5), 784 (2014). DOI: 10.1134/s0030400x14090112
  30. M.G. Kucherenko, T.M. Chmereva, D.A. Kislov. Vestnik OGU, 1, 170 (2011) (in Russian)
  31. M.G. Kucherenko, V.M. Nalbandyan. J. Opt. Technol., 85 (9), 524 (2018). DOI: 10.1364/jot.85.000524
  32. M.G. Kucherenko, V.M. Nalbandyan, T.M. Chmereva. J. Opt. Technol., 88 (9), 489 (2021). DOI: 10.1364/JOT.88.000489
  33. A.I. Kitaygorodsky. Tetrahedron., 9, 183 (1960). DOI: 10.1016/0040-4020(60)80007-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru