Magnetocaloric properties of a ribbon sample of Heusler alloy Ni45Co5Mn31Al19: experimental and theoretical studies
Gamzatov A. G.1,2, Sokolovsky V. V.1,2, Batdalov A. B.1, Aliev A. M.1, Kim D. -H.3, Yen N.H.4, Dan N. H.4, Yu S. -C.5
1Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Chelyabinsk State University, Chelyabinsk, Russia
3Department of Physics, Chungbuk National University, Cheongju, South Korea
4Institute of Materials Science, VAST, Hanoi, Vietnam
5School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, South Korea
Email: gamzatov_adler@mail.ru

PDF
The results of experimental and theoretical studies of magnetocaloric properties of a ribbon sample of alloy Ni45Co5Mn31Al19 in the range of T=80-350 K in magnetic fields of up to 8 T are given. This alloy demonstrates a first-order magnetostructural phase transition (MSPT) in the temperature range of 270 K, as well as a second-order transition - at the Curie temperature of 294 K. The magnetocaloric effect (MCE) was studied both by the direct method of magnetic field modulation in cyclic fields up to 8 T and by the classical extractive method. Field dependence of MCE have a different nature for first- and second-order phase transitions. A reverse MCE near MSPT is irreversible, i.e. the final sample temperature is 0.75 K below the initial one. Theoretical studies of magnetic properties and MCE of the studied sample were performed by ab initio calculations and Monte Carlo modeling. Theoretical temperature dependences of MCE are characterized by a similar interval of effect manifestation in the region of martensitic transformation and a narrower interval in the region of austenite Curie temperature as compared to the experiments, which is conditioned by the presence of a heterogeneous mixed state of austenite in the experimental sample. On the whole, theoretical data qualitatively and quantitatively reproduce the experimental dependences. Keywords: magnetocaloric effect, cyclic fields, Heusler alloy, Monte Carlo method.
  1. F-x. Hu, B-g. Shen, J-r. Sun, G-h. Wu. Phys. Rev. B 64, 132412 (2001)
  2. V.V. Khovaylo, V.V. Rodionova, S.N. Shevyrtalov, V. Novosad. Phys. Status Solidi B 1 (2014)
  3. L. Gonzalez-Legarreta, W.O. Rosa, J. Garci a, M. Ipatov, M. Nazmunnahar, L. Escoda, J.J. Sunol, V.M. Prida, R.L. Sommer, J. Gonzalez, M. Leoni, B. Hernando. J. Alloys Comp. 582, 588 (2014)
  4. H.Y. Nguyen, T.M. Nguyen, M.Q. Vu, T.T. Pham, D.T. Tran, H.D. Nguyen, L.T. Nguyen, H.H. Nguyen, V.V. Koledov, A. Kamantsev, A. Mashirov. Adv. Nat. Sci.: Nanosci. Nanotechnology 9, 025007 (2018)
  5. W. Guan, Q.R. Liu, B. Gao, S.Yang, Y. Wang, M.W. Xu, Z.B. Sun, X.P. Song. J. Appl. Phys. 109, 07A903 (2011)
  6. H.C. Xuan, K.X. Xie, D.H. Wang, Z.D. Han, C.L. Zhang, B.X. Gu, Y.W. Du. Appl. Phys. Lett. 92, 242506 (2008)
  7. A.G. Gamzatov, A.B. Batdalov, Sh.K. Khizriev, A.M. Aliev, L.N. Khanov, N.H. Yen, N.H. Dan, H. Zhou, S. Yu, D. Kim. J. Alloys Comp. 842, 155783 (2020)
  8. A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, Sh.K. Khizriev, D.A. Kuzmin, A.P. Kamantsev, D.-H. Kim, N.H. Yen, N.H. Dan, S.-C. Yu. J. Mater. Sci. 56, 15397 (2021)
  9. Sh.K. Khizriev, A.G. Gamzatov, A. B. Batdalov, A.M. Aliev, L.N. Khanov, D.-H. Kim, S.-C. Yu, N.H. Yen, N.H. Dan. Phys. Solid State 62, 1280 (2020)
  10. A.M. Aliev, A.B. Batdalov, I.K. Kamilov, V.V. Koledov, V.G. Shavrov, V.D. Buchelnikov, J. Garci a, V.M. Prida, B. Hernando. Appl. Phys. Lett. 97, 212505 (2010)
  11. F. Cugini, D. Orsi, E. Bruck, M. Solzi. Appl. Phys. Lett. 113, 232405 (2018)
  12. Y. Nguyen, M. Nguyen, Q. Vu, T. Pham, V.V. Koledov, A. Kamantsev, A. Mashirov, T. Tran, H. Kieu, Y. Seong, D. Nguyen. EPJ Web Conf. 185, 05001 (2018)
  13. G.P. Felcher, J.W. Cable, M.K. Wilkinsonm. Phys. Chem. Solids 24, 1663 (1963)
  14. F. Gejima, Y. Sutou, R. Kainuma, K. Ishida. Metallurg. Mater. Transact. A 30, 2721 (1999)
  15. H.C. Xuan, F.H. Chen, P.D. Han, D.H. Wang, Y.W. Du. Intermetallic 47, 31 (2014)
  16. M.V. Lyange, E.S. Barmina, V.V. Khovaylo. Mater. Sci. Foundations 81, 232 (2015)
  17. C. Liu, W. Zhang, Z. Qian, Z. Hu, Q. Zhao, Y. Sui, W. Su, M. Zhang, Z. Liu, G. Liu, G. Wu. J. Alloys Comp. 433, 37 (2007)
  18. H. Ebert, D. Kodderitzsch, J. Minar. Rep. Prog. Phys. 74, 096501 (2011)
  19. M.V. Lyange, V.V. Sokolovskiy, S.V. Taskaev, D.Yu. Karpenkov, A.V. Bogach, M.V. Zheleznyi, I.V. Shchetinin, V.V. Khovaylo, V.D. Buchelnikov. Intermetallics 102, 132 (2018)
  20. V.D. Buchelnikov, V.V. Sokolovskiy, H.C. Herper, H. Ebert, M.E. Gruner, S.V. Taskaev, V.V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, P. Entel. Phys. Rev. B 81, 094411 (2010)
  21. D. Comtesse, M.E. Gruner, M. Ogura, V.V. Sokolovskiy, V.D. Buchelnikov, A. Grunebohm, R. Arroyave, N. Singh, T. Gottschall, O. Gutfleisch, V.A. Chernenko, F. Albertini, S. Fahler, P. Entel. Phys. Rev. B 89, 184403 (2014)
  22. V. Sokolovskiy, A. Grunebohm, V. Buchelnikov, P. Entel. Entropy 16, 4992 (2014)
  23. T. Castan, E. Vives, P.-A. Lindgard. Phys. Rev. B 60, 7071 (1999)
  24. V.V. Sokolovskiy, O. Miroshkina, M. Zagrebin, V. Buchelnikov. J. Appl. Phys. 127, 163901 (2020).
  25. C. Jing, J. Chen, Z. Li, Y. Qiao, B. Kang, S. Cao, J. Zhang. J. Alloys Comp. 475, 1 (2009)
  26. A.B. Batdalov, L.N. Khanov, A.V. Mashirov, V.V. Koledov, A.M. Aliev. J. Appl. Phys. 129, 123901 (2021)
  27. V.V. Khovaylo, K.P. Skokov, O. Gutfleisch, H. Miki, R. Kainuma, T. Kanomata. Appl. Phys. Lett. 97, 052503 (2010).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru