Heat capacity, thermal conductivity and magnetocaloric effect in Heusler alloy Ni47Mn40Sn13
Gamzatov A. G.1, Batdalov A. B.1, Khizriev Sh. K.1, Mukhuchev A. M.1, Aliev A. M.1, Varzaneh A. Ghotbi.2, Kameli P.2, Sarsari I. Abdolhosseini.2, Jannati S.2
1Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Department of Physics, Isfahan University of Technology, Isfahan, Iran
Email: gamzatov_adler@mail.ru
The results of a study of heat capacity, thermal conductivity and magnetocaloric effect of the polycrystalline Ni47Mn40Sn13 alloy depending on temperature (T=80-350 K) and magnetic field (0-8 T) are given. A considerable difference between the values of a sudden change in heat capacity Delta CP in the heating and cooling mode was found near the magnetostructural martensite-austenite phase transition (MSPT), which is related to influence of latent heat of phase transition. Thermal conductivity in the range of T=80-300 K rises with temperature (dkappa/dT>0) and increases in more than three times. Electronic thermal conductivity in the martensitic phase (T=150 K) is 37% of the total value. An anomalous rise of thermal conductivity Deltakappa=kappa(aust)-kappa(mart)=4.2 Wm K was found in the region of MSPT. The contributions of electrons and phonons to the observed sudden change are 63 and 37% respectively and are conditioned both by a rise of mobility of conduction electrons under a martensite-austenite transition and by an increase of phonons' free path length. The magnetocaloric effect in cyclic magnetic fields with the amplitude of 1.8 T was studied. A dependence of reverse effect value on temperature scanning rate was established. The direct measurements of Delta T in the cyclic magnetic field of 1.2 T show a twofold decrease of the effect amplitude near TC at an increase of cyclic magnetic field frequency from 1 to 30 Hz. Most likely, this is related to magnetic and microstructural heterogeneities which act as an additional thermal dissipation channel. Keywords: Heusler alloys, heat capacity, thermal conductivity, magnetocaloric effect, cyclic magnetic fields.
- T. Krenke, M. Acet, E.F. Wassermann. Phys. Rev. B 72, 014412 (2005)
- K. Koyama, T. Igarashi, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, K. Ishida. J. Magn. Magn. Mater. 310, 994 (2007)
- T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes. Nature Mater. 4, 450 (2005)
- S. Aksoy, M. Acet. Phys. Rev. B 79, 212401 (2009)
- A. Banerjee, P. Chaddah, S. Dash, K. Kumar, A. Lakhani. Phys. Rev. B 84, 214420 (2011)
- A.G. Gamzatov, A.M. Aliev, A. Ghotbi Varzanah, P. Kameli, I. Abdolhosseini Sarsari, S.C. Yu. Appl. Phys. Lett. 113, 172406 (2018)
- S. Pramanick, S. Chatterjee, S. Giri, S. Majumdar. Appl. Phys. Lett. 105, 112407 (2014)
- V.V. Sokolovskiy, V.D. Buchelnikov, M.A. Zagrebin, P. Entel, S. Sahoo, M. Ogura. Phys. Rev. B 86, 134418 (2012)
- X. Wang, J.-X. Shang, F.-H. Wang, C.-B. Jiang, H.-B. Xu. J. Magn. Magn. Mater. 355, 173 (2014)
- S.M. Podgornykh, E.G. Gerasimov, N.V. Mushnikov, T. Kanomata. J. Phys.: Conf. Ser. 266, 012004 (2011)
- A. Ghotbi Varzaneh, P. Kameli, I.A. Sarsari, M.G. Zavareh, C.S. Mejia, T. Amiri, Y. Skourski, J.L. Luo, T.H. Etsell, V.A. Chernenko. Phys. Rev. B 101, 134403 (2020)
- A. Ghotbi Varzaneh, P. Kameli, V.R. Zahedi, F. Karimzadeh, H. Salamati. Met. Mater. Int. 21, 758 (2015)
- A. Ghotbi Varzaneh, P. Kameli, T. Amiri, K.K. Ramachandran, A. Mar, I. Abdolhosseini Sarsari, J.L. Luo, T.H. Etsell, H. Salamati. J. Alloys Comp. 708, 34 (2017)
- Yu.V. Kaletina, E.G. Gerasimov, V.A. Kazantsev, A.Yu. Kaletina. FTT 59, 1978 (2017) (in Russian)
- H. Hedayati, P. Kameli, A. Ghotbi Varzaneh, S. Jannati, H. Salamati. Intermetallics 82, 14 (2017)
- Q. Zheng, G. Zhu, Z. Diao, D. Banerjee, D.G. Cahill. Adv. Eng. Mater. 1801342 (2019)
- B. Zhang, X.X. Zhang, S.Y. Yu, J.L. Chen, Z.X. Cao, G.H. Wu. Appl. Phys. Lett. 91, 012510 (2007)
- Y.K. Kuo, K.M. Sivakumar, H.C. Chen, J.H. Su, C.S. Sue. Phys. Rev. B 72, 054116 (2005)
- A.B. Batdalov, A.M. Aliev, L.N. Khanov, V.D. Buchel`nikov, V.V. Sokolovskii, V.V. Koledov, V.G. Shavrov, A.V. Mashirov, E.T. Dil`mieva. JETP 122, 874 (2016)
- L.S.S. Chandra, M.K. Chattopadhyay, V.K. Sharma, S.B. Roy, S.K. Pandey. Phys. Rev. B 81, 195105 (2010)
- A. Rudajevova. Int. J. Therm. Sci. 47, 1243 (2008)
- A.G. Gamzatov, A.B. Batdalov, A.M. Aliev, Sh.K. Khizriev, V.V. Khovaylo, A. Ghotbi Varzaneh, P. Kameli, I. Abdolhosseini Sarsari, S. Jannati. Intermetallics 143, 107491 (2022)
- J. Kavstil, J. Kamarad, M. Msek, J. Hejtmanek, Z. Arnold. J. Magn. Magn. Mater. 466, 260 (2018)
- J.L. Cohn, J.J. Neumeier, C.P. Popoviciu, K.J. McClellan, Th. Leventouri. Phys. Rev. B 56, R8495 (1997)
- R. Berman. Teploprovodnost tverdykh tel. Mir, M. (1979). 296 p. (in Russian)
- H. Rached, D. Rached, S. Benalia, A.H. Reshak, M. Rabah, R. Khenata, S. Bin Omran. Mater Chem. Phys. 143, 93 (2013)
- R.I. Barabash, O.M. Barabash, D. Popov, G. Shen, C. Park, W. Yang. Acta Mater. 87, 344 (2015)
- A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, Sh.K. Khizriev, D.A. Kuzmin, A.P. Kamantsev, D.-H. Kim, N.H. Yen, N.H. Dan, S.-C. Yu. J. Mater. Sci. 56, 15397 (2021).
- A.G. Gamzatov, A.B. Batdalov, Sh.K. Khizriev, A.M. Aliev, L.N. Khanov, N.H. Yen, N.H. Dan, H. Zhou, S.-C. Yu, D.-H. Kim. J. Alloys Comp. 842, 155783 (2020)
- A.M. Aliev, A.G. Gamzatov. J. Magn. Magn. Mater 553, 169300 (2022)
- J. Dontgen, J. Rudolph, T. Gottschall, O. Gutfleisch, D. Hagele. Energy Technology 6, 1470 (2018)
- A.G. Gamzatov, A.M. Aliev, P.D.H. Yen, L.N. Khanov, K.X. Hau, T.D. Thanh, N.T. Dung, S.-C. Yu. J. Appl. Phys. 124, 183902 (2018)
- M. Zentkova, M. Kovalik, M. Mihalik jr., K. Csach, A.G. Gamzatov, A.M. Aliev, S. I'kovivc, M. Fitta, M. Perovic. J. Magn. Magn. Mater. 549, 169002 (2022).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.