Boron-doped silicon: a possible way of testing and refining models of non-ionizing energy loss under electron- and proton irradiation
Emtsev V. V.1, Abrosimov N. V.2, Kozlovski V. V.3, Lastovskii S. B.4, Oganesyan G .A1, Poloskin D. S.1, Aref'ev A. A.5
1Ioffe Institute, St. Petersburg, Russia
2Leibniz-Institut fur Kristallzuchtung (IKZ), Berlin, Germany
3Peter the Great St.Petersburg Polytechnic University (SPbPU), St. Petersburg, Russia
4Scientific-Practical Materials Research Center of NAS of Belarus, Minsk, Belarus
5Saint Petersburg Electrotechnical University "LETI", St. Petersburg, Russia

In this paper formation and annealing of boron-related defects in p-type silicon grown by the floating zone technique and subjected to electron and proton irradiation at room temperature are discussed. The defect model suggested earlier has provided fresh insight into the nature of two dominant complexes containing boron in irradiated p-Si, among them boron-divacancy complexes and interstitial boron-substitutional boron pairs. In the present work the same material is irradiated with 6 MeV electron and 8 MeV protons providing additional electrical data to test this model. Additionally new information on boron-related defects in heavily doped p-Si subjected to irradiation with 2.5 MeV electrons at 4.2 K and then subjected to isochronal anneals above room temperature is also discussed. The results obtained on proton irradiated p-Si(FZ) testify that the annealing behavior of boron-divacancy complexes appears to be complicated, in contrast to the behavior of substitutional boron-interstitial boron pairs. The defect model based on the experimental information furnished so far may be used for testing and refining computerized simulations of Non-Ionizing Energy Loss (NIEL) in irradiated silicon. Keywords: silicon, boron impurity, electron- and proton-irradiation, impurity-related complexes.
  1. L.C. Kimerling, P. Blood, W.M. Gibson. Inst. Phys. Conf. Ser. 46, 273 (1979)
  2. M. Huhtinen. Nucl. Instrum. Meth. Nucl. Res. A 491, 194 (2002)
  3. R. Radu, I. Pintilie, N.C. Nistor, E. Fretwurst, G. Lindstroem, L.F. Makarenko. J. Appl. Phys. 117, 164503 (2015)
  4. V.V. Emtsev, N.V. Abrosimov, V.V. Kozlovskii, G.A. Oganesyan. Semiconductors 48, 11, 1438 (2014)
  5. V.V. Emtsev, N.V. Abrosimov, V.V. Kozlovskii, G.A. Oganesyan, D.S. Poloskin. Semiconductors 50, 10, 1291 (2016)
  6. V.V. Emtsev, N.V. Abrosimov, V.V. Kozlowski, S.B. Lastovskii, G.A. Oganesyan, D.S. Poloskin. J. Appl. Phys. 131, 125705 (2022)
  7. D.C. Look. Electrical Characterization of GaAs Materials and Devices. Wiley, N.Y. (1989)
  8. J.S. Blakemore. Semiconductor Statistics. Pergamon, Oxford, London, N.Y., Paris (1962)
  9. K. Seeger. Semiconductor Physics. Springer, Wien, N.Y. (1973)
  10. F.J. Morin, J.P. Maita. Phys. Rev. 96, 28 (1954)
  11. P.J. Drevinsky, C.E. Caefer, S.P. Tobin, J.C. Mikkelsen, Jr., L.C. Kimerling. In: Defects in Electronic Materials / Eds M. Stavola, S.J. Pearton, G. Davies. Mater. Res. Soc. Proc. 104, Pittsburgh (1988). 167 p
  12. G.D. Watkins. Phys. Rev. B 12, 5824 (1975)
  13. A.K. Tipping, R.C. Newman. Semicond. Sci. Technol. 2, 389 (1987)
  14. G.D. Watkins. Phys. Rev. B 13, 2511 (1976)
  15. V.V. Emtsev, P. Ehrhart, D.S. Poloskin, U. Dedek. Physica B 273--274, 287 (1999)
  16. G.D. Watkins, J.W. Corbett. Phys. Rev. 134, A1359 (1964)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245