Formation of Cu6Sn5 intermetallic in Cu/Sn thin films
Bykova L. E. 1, Zharkov S. M. 1,2, Myagkov V. G.1, Balashov Yu. Yu.1, Patrin G. S. 1,2
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian State University, Krasnoyarsk, Russia
Email: lebyk@iph.krasn.ru, zharkov@iph.krasn.ru, miagkov@iph.krasn.ru, y.balashov@yandex, patrin@iph.krasn.ru

PDF
The study of the formation of the Cu6Sn5 intermetallic compound in Sn(55 nm)/Cu(30 nm) thin bilayer films was carried out directly in the column of a transmission electron microscope (electron diffraction mode) by heating the film sample from room temperature to 300oC and recording the electron diffraction patterns. The thin films formed as a result of a solid state reaction were monophase and consisted of the eta-Cu6Sn5 hexagonal phase. The temperature range for the formation of the eta-Cu6Sn5 phase was determined. The estimate of the effective interdiffusion coefficient of the reaction suggests that the main mechanism for the formation of the Cu6Sn5 intermetallic is diffusion along the grain boundaries and dislocations. Keywords: thin films, Cu6Sn5 intermetallic compound, transmission electron microscopy, electron diffraction.
  1. S. Cheng, C.M. Huang, M. Pecht. Microelectron Rel. 75, 77 (2017)
  2. A. Kunwar, J. Hektor, S. Nomoto, Yu.A. Coutinho, N. Moelans. Inter. J. Mech. Sci. 184, 105843 (2020)
  3. F. Somidin, H. Maeno, M.A.A. Mohd Salleh, X.Q. Trana, S.D. Mc Donalda, S. Matsumura, K. Nogita. Mater. Character. 138, 113 (2018)
  4. L. Meinshausen, H. Fremont, K. Weide-Zaage, B. Plano. Microelectron Rel. 53, 1575 (2013)
  5. R.Z. Hu, M.Q. Zeng, M. Zhu. Electrochim. Acta. 54, 2843 (2009)
  6. Ya. Xing, S. Wang, B. Fang, Y. Feng, S. Zhang. Micropor. Mesopor. Mater. 261, 237 (2018)
  7. G. Zeng, S.D. Mc Donald, J.J. Read, Q. Gu, K. Nogita. Acta Mater. 69, 135 (2014)
  8. Y.Q. Wu, J.C. Barry, T. Yamamoto, Q.F. Gu, S.D. Mc Donald, S. Matsumura, H. Huang, K. Nogita. Acta Mater. 60, 6581 (2012)
  9. D.K. Mu, S.D. Mc Donald, J. Read, H. Huang, K. Nogita. Solid State Mater. Sci. 20, 55 (2016)
  10. M.Y. Li, Z.H. Zhang, J.M. Kim. Appl. Phys. Lett. 98, 201901 (2011)
  11. N. Saunders, A.P. Miodownik. Bull. Alloy Phase Diagr. 11, 278 (1990)
  12. Powder Diffraction File (PDF 4+, 2018), Inorganic Phases Database, International Center for Diffraction Data (ICDD), Swarthmore, PA, USA.
  13. A. Makovec, G. Erdelyi, D.L. Beke. Thin Solid Films, 520, 2362 (2012)
  14. Y. Zhong, C. Wang, J. Wang, H. Ma, S. Krishnamoorthy, V. Paley, Z. Weng, S. Jin. Mater. Res. Lett. 8, 431 (2020)
  15. Z.H. Zhang, C.W. Wei, J.J. Han, H.J. Cao, H.T. Chen, M.Y. Li. Acta Mater. 183, 340 (2020)
  16. V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, A.A. Matsynin, D.A. Velikanov, G.N. Bondarenko. J. Alloys Compd. 861, 157938 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru