Polarized luminescence of MoS2 nanodots
Starukhin A. N.1, Nelson D. K.1, Kurdyukov D. A. 1, Stovpyaga E. Y.1
1Ioffe Institute, St. Petersburg, Russia
Email: a.starukhin@mail.ioffe.ru

PDF
The effect of temperature on the polarization of the luminescence of the colloidal system of MoS2 nanodots in n-methylpyrrolidone is studied under the condition of linearly polarized excitation. Nanodots are obtained by chemical exfoliation and dispersion of MoS2 microcrystals in a liquid medium under the action of ultrasound. The photoluminescence spectrum of the ensemble of MoS2 nanodots is significantly shifted towards shorter wavelengths with respect to the luminescence spectrum of bulk crystals, which is explained by the quantum-size effect in the electronic spectrum of MoS2 nanocrystals. It is shown that the temperature dependence of the anisotropy of the radiation of nanodots is described by the Levshin-Perrin equation, which takes into account the rotational diffusion of luminescent particles in the liquid matrix. The size of photoexcited nanodots in the framework of the Levshin-Perrin model turns out to be ≥ 1.5 nm and increases with increasing the emission wavelength. It is shown that the sizes of MoS2 nanodots obtained by analyzing the temperature dependence of the emission anisotropy are in satisfactory agreement with the data obtained by analyzing the quantum-size effect in the electronic spectrum of nanodots. Keywords: polarized luminescence, molybdenum disulfide, nanodots, colloidal systems.
  1. Electrons and phonons in layered crystal structures (Physics and chemistry of materials with layered structures. V. 3) / Eds T.J. Wieting, M. Schluter. D. Reidel. Publishing Company, Dordrecht, Holland (1979). 474 p
  2. M.R. Vazirisereshk, A. Martini, D.A. Strubbe, M.Z. Baykara. Lubricants 7, 57 (2019)
  3. M. Sharon, M. Sharon. Graphene: An Introduction to the Fundamentals and Industrial Applications. Scrivener Publishing, Wiley (2015). 320 p
  4. R. Ganatra, Q. Zhang. ACS Nano 8, 4074 (2014)
  5. K.-C. Chiu, X.-Q. Zhang, X. Liu, V.M. Menon, Y.-F. Chen, J.-M. Wu, Y.-H. Lee. IEEE J. Quantum Electronics 51, 1 (2015)
  6. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla. Nano Lett. 11, 5111 (2011)
  7. G.W. Mudd, S.A. Svatek, T. Ren, A. Patane, O. Makarovsky, L. Eaves, P.H. Beton, Z.D. Kovalyuk, G.V. Lashkarev, Z.R. Kudrynskyi, A.I. Dmitriev. Adv. Mater. 25, 40, 5714 (2013)
  8. T. Mueller, E. Malic. NPJ 2D Mater. Appl. 2, 29 (2018)
  9. O.V. Yazyev, A. Kis. Mater. Today 18, 20 (2015)
  10. X. Yang, B. Li. Nanophotonics 9, 1557 (2020)
  11. S. Mukherjee, R. Maiti, A. Midya, S. Das, S.K. Ray. ACS Photonics 2, 760 (2015)
  12. D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V.K. Pillai, P.M. Ajayan, M.M. Shaijumon. Chem. Commun. 51, 6293 (2015)
  13. D. Bhattacharya, S. Mukherjee, R.K. Mitra, S.K. Ray. Nanotechnology 31, 145701 (2020)
  14. M.W. Peterson, M.T. Nenadovic, T. Rajh, R. Herak, O.I. Micic, J.P. Goral, A.J. Nozik. J. Phys. Chem. 92, 1400 (1988)
  15. Photoelectrochemistry and photovoltaics of layered semiconductors / Ed. A. Aruchamy. Kluwer Academic Publishers, Dordrecht, the Netherlands (1992). 360 p
  16. W. Gu, Y. Yan, C. Zhang, C. Ding, Y. Xian. ACS Appl. Mater. Interfaces 8, 11272 (2016)
  17. H. Lin, C. Wang, J. Wu, Z. Xu, Y. Huanga, C. Zhang. New J. Chem. 39, 8492 (2015)
  18. S. Yadav, P. Chaudhary, K.N. Uttam, A. Varma, M. Vashistha, B.C. Yadav. Nanotechnology 30, 295501 (2019)
  19. J. Kabel, S. Sharma, A. Acharya, D. Zhang, Y.K. Yap. C-J. Carbon Res. 7, 45 (2021)
  20. Y. Guo, J. Li. Mater. Sci. Eng. C 109, 110511 (2020)
  21. P.P. Feofilov. Polyarizovannaya lyuminestsentsiya atomov, molekul i kristallov. Fizmatgiz, M. (1959) 288 p. [P.P. Feofilov. The Physical Basic of Polarized Emission. Consultants Bureau, N. Y. (1961). 274 p.]
  22. J.R. Lakowicz. Principles of Fluorescence Spectroscopy. Springer Science \& Business Media (2006). 954 p
  23. P. Wu, Z. Liu, Z.-L. Cheng. ACS Omega 4, 9823 (2019)
  24. S.N. Jasperson, S.E. Schnatterly. Rev. Sc. Instr. 40, 761 (1969)
  25. M. Placidi, M. Dimitrievska, V. Izquierdo-Roca, X. Fontane, A. Castellanos-Gomez, A. Perez-Tomas, A. Perez-Rodri guez. 2D Materials 2, 035006 (2015)
  26. J. Kopaczek, S.J. Zelewski, M.P. Polak, A. Gawlik, D. Chiappe, A. Schulze, M. Caymax, R. Kudrawiec. J. Appl. Phys. 125, 135701 (2019)
  27. C.F. Klingshirn. Semiconductor Optics. Springer Science \& Business Media (2007). 816 p
  28. D.A. Friedrichsberg. Kurs kolloidnoy khimii. Khimiya, L., (1984). 568 p. (in Russian)
  29. G. Weber. Adv. Protein Chem. 8, 415 (1953)
  30. J.R. Langan, G.A. Salmon. J. Chem. Eng. Data 32, 420 (1987)
  31. D. Gopalakrishnan, D. Damien, M.M. Shaijumon. ACS Nano 8, 5297 (2014). Supporting information
  32. N. Wakabayashi, H.G. Smith, R.M. Nicklow. Phys. Rev. B 12, 659 (1975)
  33. Y. Guo, J. Li. Mater. Sci. Eng. C 109, 110511 (2020)
  34. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse. Phys. Rev. B 35, 6195 (1987)
  35. R. Coehoorn, C. Haas, R.A. de Groot. Phys. Rev. B 35, 6203 (1987)
  36. B.I. Stepanov, V.P. Gribkovsky. Vvedenie v teoriyu lyuminestsentsii. Izd-vo AN BSSR, Minsk (1963). 444 p. (in Russian)
  37. J. Kopaczek, M.P. Polak, P. Scharoch, K. Wu, B. Chen, S. Tongay, R. Kudrawiec. J. Appl. Phys. 119, 235705 (2016)
  38. Y. Kayanuma. Phys. Rev. B 38, 9797 (1988)
  39. N. Saigal, V. Sugunakar, S. Ghosh. Appl. Phys. Lett. 108, 132105 (2016)
  40. B.L. Evans, P.A. Young. Proc. Roy. Soc. A 284, 402 (1965)
  41. Goryca, J. Li, A.V. Stier, T. Taniguchi, K. Watanabe, E. Courtade, S. Shree, C. Robert, B. Urbaszek, X. Marie, S.A. Crooker. Nature Commun. 10, 4172 (2019)
  42. N. Saigal, V. Sugunakar, S. Ghosha. Appl. Phys. Lett. 108, 132105 (2016). Supplementary materials
  43. Molybdenum Disulfide. Kee Hing Cheung Kee Co., Ltd: Hong Kong. http://www.khck.hk/adgoogle/Molybdenum-Disulfide.htm
  44. Optical and electrical properties (Physics and chemistry of materials with layered structures. v. 4) / Ed. P.A. Lee. D. Reidel. Publishing Company, Dordrecht, Holland (1976). 464 p
  45. U. Woggon. Optical Properties of Semiconductor Quantum Dots. Springer-Verlag, Berlin Heidelberg (1997). 251 p
  46. S.I. Pokutniy. FTP 41, 1341 (2007) (in Russian)
  47. N. Nishiguchi, K. Yoh. Jpn. J. Appl. Phys. 36, 3928 (1997)
  48. H.A. Abid, S.N.T. Al-Rashid. Chalcogenide Lett. 17, 623 (2020)
  49. A.F. van Driel, G. Allan, C. Delerue, P. Lodahl, W.L. Vos, D. Vanmaekelbergh. Phys. Rev. Lett. 95, 236804 (2005).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru