Electron Transport Mechanisms in Polyethylene Terephthalate Membranes
Fedotov A. K.1, Movchan S. A.2, Apel P. Yu.2, Fedotova J. A.1, Pashkevich A. V.1,3
1Research Institute for Nuclear Problems of Belarusian State University, Belarus
2Joint Institute for Nuclear Research, Russia
3Physics Department, Belarusian State University, Minsk, Belarus
Email: akf1942@gmail.com, movchansa@yandex.ru, apel@jinr.ru, julia@hep.by, alexei.paschckevich@yandex.by

PDF
This paper describes carrier transport mechanisms in polyethylene terephthalate (PET) films and porous PET-based membranes (PMs) obtained by irradiating pristine PET film with swift heavy ions, with subsequent chemical etching in an alkali (NaOH) solution. The obtained PMs had through nanochannels (pores) with an average diameter of 720-750 nm. We observed that in the temperature range 240-300 K, the current-voltage characteristics I(V) of the initial Cu|PET|Cu structure obeyed the improved Mott-Gurney law, which is based on the Mark-Helfrich model for a space-charge-limited current (SCLC) mechanism for electron transport. It was found for the first time that creation of nanochannels in PMs resulted in a significant increase in the electric current density (by about three orders of magnitude) while maintaining the SCLC mechanism. The enhanced current density is explained by the formation of a highly conductive layer along the inner surface of the walls of the nanochannel that are covered with carboxyl end groups, which are created by alkaline hydrolysis. According to the model, the surface states formed by these groups enable the drift of additional electrons injected from the copper electrodes under the action of the bias voltage. Keywords: polyethylene terephthalate, electron transport, space-charge-limited current mechanism, Mark-Helfrich injection model.
  1. S.M. Haque, J.A.A. Rey, A.A. Masud, Y. Umar, R. Albarracin. Ch. 3 "Properties and Applications of Polymer Dielectrics" in "Properties and Applications of Polymer Dielectrics" / Ed. Boxue Du. Intech Open (2017). https://www.intechopen.com/chapters/52876
  2. P. Apel. Rad. Measurements 34, 1--6, 559 (2001)
  3. M. Kechadi, L. Chaal, V. Vivier, B. Tribollet, J. Gamby. Phys. Chem. Chem. Phys. 18, 30, 20583 (2016)
  4. Z. Chen. The Crystallization of Poly(ethyleneterephthalate) Studied by Thermal Analysis and FTIR Spectroscopy. PhD thesis, University of Birmingham (2012). https://etheses.bham.ac.uk/id/eprint/4251/1/Chen13PhD.pdf
  5. W. Volksen, R.D. Miller, G. Dubois. Chem. Rev. 110, 1, 56 (2010)
  6. A. Atta, E. Abdeltwab, A. Bek. Research Square (2021). 22 p. DOI: https://doi.org/10.21203/rs.3.rs-220271/v1
  7. H.B. Luck. Nucl. Instruments. Methods 213, 2--3, 507 (1983)
  8. S.P. Tretyakova, P.Yu. Apel, L.V. Jolos, T.I. Mamonova, V.V. Shirkova. Proceed. 10th Int. Conf., 283 (1980)
  9. L.E. Amborski. J. Polymer Sci. 62, 331 (1962)
  10. D.M. Taylor, T.J. Lewis. J. Phys. D 4, 9, 1346 (1971)
  11. J. Ho, T.R. Jow. IEEE Int. Power Modulator. High Voltage Conf. (IPMHVC), 399 (2012)
  12. N. Belkahla, N. Saidi-Amroun, M. Saidi, M. Benaissa. Int. J.Polymer Analysis. Characterization 18, 1, 15 (2013)
  13. G.N. Flerov, P.Yu. Apel, A.Yu. Didyk, V.I. Kuznetsov, R.Ts. Oganesyan. Atomic Energy 67, 4, 274 (1989)
  14. P. Apel. Track-etching. In: E.M.V. Hoek and V.V. Tarabara (Eds). Encyclopedia of Membrane Science and Technology. John Wiley and Sons, Inc. (2013). P. 1--25
  15. P. Mark, W. Helfrich. J. Appl. Phys. 33, 1, 205 (1962)
  16. N.F. Mott, R.W. Gurney. Electronic Processes in Ionic Crystals. Oxford University Press, N. Y. (1940). 209 p
  17. S.M. Sze, K.K. Ng. Physics of Semiconductor Devices, 3rd ed. Wiley-Interscience (2006)
  18. M.A. Lampert, P. Mark. Current Injection in Solids. Academic Press (1970). 351 p
  19. J.A. Rohr and R.C.I. MacKenzie. Journal of Applied Physics 128, 165701 (2020). https://doi.org/10.1063/5.0024737
  20. J.A. Rohr. Measurements and Modelling of Space-Charge-Limited, PhD thesis. Imperial College, London (2018). 248 p
  21. A. Sim. Unified Model of Charge Transport in Insulating Polymeric Materials. PhD thesis. Utah State University (2013). 269 p
  22. D.R. Lamb. Electrical Conduction Mechanisms in Thin Insulating Films. Methuen and Co., Ltd. (1967)
  23. P.W. May, S. Hohn, W.N. Wang, N.A. Fox. Appl. Phys. Lett. 72, 17, 2182 (1998)
  24. A. Rose. Phys. Rev. 97, 6, 1538 (1955)
  25. V.K. Il'yasov, A.N. Lachinov, A.V. Moshelev, A.F. Ponomarev. Phys. Solid State 50, 3, 568 (2008)
  26. https://chem.libretexts.org/Courses/Athabasca_niversity/Chemistry_360%3A_Organic_Chemistry_II/Chapter_20% 3A_Carboxylic_Acids_and_Nitriles/20.02_Structure_and_ Properties_of_Carboxylic_Acids
  27. C.W. Dence. In: C.W. Dence, S.Y. Lin (Eds). Methods in Lignin Chemistry. Springer (1992). 458 p

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru