Influence of functionalization with citric acid on the properties of magnetic nanoparticles ZnxFe3-xO4 (0≤ x≤ 1.0)
Kamzin A. S.1, Caliskan G.2, Dogan N.2, Bingolbali A.3, Semenov V. G4, Buryanenko I. V.5
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, Gebze Technical University, Kocaeli, Turkey
3Department of Bioengineering, Yi ldi z Technical University, Istanbul, Turkey
4St. Petersburg State University, St. Petersburg, Russia
5Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
The effect of surface functionalization with citric acid on the properties of magnetic nanoparticles (MNPs) ZnxFe3-xO4 (x=0; 0.25; 0.5; 0.75; 1.0) synthesized by the hydrothermal method was studied. To study the properties of MNPs, X-ray diffractometry (XRD) and energy dispersive X-ray spectroscopy (EDS) were used. The magnetic properties of the samples and the phase state of MNPs were studied using a physical property measurement system (PPMS) and Mossbauer spectroscopy (MS). It has been established that the sizes of crystallites and the crystal lattice parameter of ZnxFe3-xO4 MNPs change with increasing Zn2+ concentration. The low values of the coercive force and the presence of a doublet on the MS indicate the presence of both ferrimagnetic and superparamagnetic components. Keywords: ZnxFe3-xO4 ferrite spinel MNPs, hydrothermal synthesis, functionalization of MNPs with citric acid, crystal structure, magnetic properties, magnetic structure.
  1. C.M. Hussain. Handbook of Nanomaterials for Industrial Applications. Elsevier Inc., Amsterdam, Netherlands (2018). 709 p
  2. K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao, Y. Hou. Acc. Chem. Res. 51, 2, 404 (2018)
  3. S. Dey, S.K. Dey, K. Bagani, S. Majumder, A. Roychowdhury, S. Banerjee, V.R. Reddy, D. Das, S. Kumar. Appl. Phys. Lett. 105, 6, 063110 (2014)
  4. B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M.S. Fernandez, A. Talone, G. Muscas, D. Peddis. Beilstein J. Nanotechnol. 10, 856 (2019)
  5. A. Kaur, G.K. Bhargava. Mater. Today: Proc. 37, Part 2, 3082 (2021)
  6. Clinical Applications of Magnetic Nanoparticles / Ed. N.T.K. Thanh. CRC Press Taylor \& Francis Group (2018). 495 p
  7. L. Peixoto, R. Magalhaes, D. Navas, S. Moraes, C. Redondo, R. Morales, J.P. Araujo, C.T. Sousa. Appl. Phys. Rev. 7, 1, 011310 (2020)
  8. M.M. Cruz, L.P. Ferreira, J. Ramos, S.G. Mendo, A.F. Alves, M. Godinho, M.D. Carvalho. J. All. Comp. 703, 370 (2017)
  9. K. Islam, M. Haque, A. Kumar, A. Hoq, F. Hyder, S.M. Hoque. Nanomater. 10, 11, 2297 (2020)
  10. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomater. 11, 5, 1231 (2021)
  11. M. Wen, Q. Li, Y. Li. J. Electron Spectroscop. Rel. Phenomena 153, 3, 65 (2006). DOI: 10.1016/j.elspec.2006.06.002
  12. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur. Ceram. Int. 46, 10, 15740 (2020)
  13. I. Sharifi, H. Shokrollahi, S. Amiri. J. Magn. Magn. Mater. 324, 6, 903 (2012)
  14. J.M. Byrne, V.S. Coker, E. Cespedes, P.L. Wincott, D.J. Vaughan, R.A.D. Pattrick, G. van der Laan, E. Arenholz, F. Tuna, M. Bencsik, J.R. Lloyd, N.D. Telling. Adv. Funct. Mater. 24, 2518 (2014). DOI: 10.1002/adfm.201303230
  15. V. v Sepelak. Ann. Chim. Sci. Mater 27, 6, 61 (2002)
  16. T. Hyeon, S.S. Lee, P.J. Chung Y, H.B. Na. J. Am. Chem. Soc. 123, 51, 12798 (2001)
  17. Y.B. Khollam, S.R. Dhage, H.S. Potdar, S.B. Deshpande, P.P. Bakare, S.D. Kulkarni, S.K. Date. Mater. Lett. 56, 571 (2001)
  18. Y. Lee, J. Lee, C.-J. Bae, J.-G. Park, H.-J. Noh, J.-H. Park, T. Hyeon. Adv. Funct. Mater. 15, 3, 503 (2005)
  19. A.K. Gupta, M. Gupta. Biomaterials 26, 18, 3995 (2005)
  20. J. Bennet, R. Tholkappiyan, K. Vishista, N.V. Jaya, F. Hamed. Appl. Surf. Sci. 383, 113 (2016). https://doi.org/10.1016/j.apsusc.2016.04.177
  21. T. Vigneswari, P. Raji. Inorg. Nano-Metal Chem. 49, 354 (2019). https://doi.org/10.1080/24701556.2019.1661453
  22. H. Mahajan, S.K. Godara, A.K. Srivastava. J. Alloys. Compounds 896, 162966 (2021)
  23. E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran. Appl. Phys. Rev. 2, 4, 041302 (2015). DOI: 10.1063/1.4935688
  24. E. Umut, M. Co skun, H. Gungune s, V. Dupuis, A.S. Kamzin. J. Supercond. Nov. Magn. 34, 3, 913 (2021). DOI: 10.1007/s10948-020-05800-y
  25. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. FTT 62, 10, 1715 (2020) (in Russian). DOI: 10.21883/FTT.2020.10.49928.056
  26. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. FTT 62, 11, 1919 (2020) (in Russian). DOI: 10.21883/FTT.2020.11.50071.062
  27. M.A. Dheyab, A.A. Aziz, M.S. Jameel, O. Abu Noqta, P. Moradi Khaniabadi, B. Mehrdel. Sci. Rep. 10, 1, 10793 (2020). DOI: 10.1038/s41598-020-67869-8
  28. E. Cheraghipour, S. Javadpour, A.R. Mehdizadeh. J. Biomed. Sci. Eng. 5, 12, 715 (2012)
  29. H. Gupta, P. Paul, N. Kumar, S. Baxi, D.P. Das. J. Colloid Interface Sci. 430, 221 (2014)
  30. C. Scharlach, C. Warmuth, E. Schellenberger. Magn. Res. Imaging 33, 9, 1173 (2015)
  31. P.H. Linh, N.X. Phuc, L.V. Hong, L.L. Uyen, N.V. Chien, P.H. Nam, N.T. Quy, H.T.M. Nhung, P.T. Phong, I.J. Lee. J. Magn. Magn. Mater. 460, 128 (2018). https://doi.org/10.1016/j.jmmm.2018.03.065
  32. V. Narayanaswamy, I.M. Obaidat, A.S. Kamzin, S. Latiyan, S. Jain, H. Kumar, C. Srivastava, S. Alaabed, B. Issa. Int. J. Mol. Sci. 20, 13, 3368 (2019). DOI: 10.3390/ijms20133368
  33. A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. FTT 63, 6, 807 (2021) (in Russian). DOI: 10.21883/FTT.2021.06.50944.004
  34. A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. FTT 63, 7, 900 (2021) (in Russian). DOI: 10.21883/FTT.2021.07.51040.039
  35. M. Amiri, M. Salavati-Niasari, A. Akbari. Adv. Colloid. Interface Sci. 265, 29 (2019). https://doi.org/10.1016/j.cis.2019.01.003
  36. L.O. Lanier, O.I. Korotych, A.G. Monsalve, D. Wable, S. Savliwala, N.W.F. Grooms, C. Nacea, O.R. Tuitt, J. Dobson. Int. J. Hyperthermia 36, 687 (2019). DOI: 10.1080/02656736.2019.1628313
  37. G.Yu. Vasyukov, I.V. Mitrofanova, V.V. Ivanova, V.D. Prokopyeva. Byull. Sibirskoi meditsiny 13, 6, 33 (2014) (in Russian)
  38. Y. Pineiro-Redondo, M. Banobre-Lopez, I. Pardinas-Blanco, G. Goya, M.A. Lopez-Quintela, J. Rivas. Nanoscale Res. Lett. 6, 1, 383 (2011). DOI: 10.1186/1556-276x-6-383
  39. C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, I. Obaidat. Magnetochem. 3, 2, 19 (2017). DOI: 10.3390/magnetochemistry3020019
  40. M.A.A. Kerroum, C. Iacovita, W. Baaziz, D. Ihiawakrim, G. Rogez, M. Benaissa, C.M. Lucaciu, O. Ersen. Int. J. Mol. Sci. 21, 20, 7775 (2020). DOI: 10.3390/ijms21207775
  41. A. Hanini, L. Lartigue, J. Gavard, K. Kacem, C. Wilhelm, F. Gazeau, F. Chau, S. Ammar. J. Magn. Magn. Mater. 416, 315 (2016). https://doi.org/10.1016/j.jmmm.2016.05.016
  42. P.M. Zelis, G.A. Pasquevich, S.J. Stewart, M.B.F. Van Raap, J. Aphesteguy, I.J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F.H. Sanchez. J. Phys. D 46, 12, 125006 (2013). https://doi.org/10.1088/0022-3727/46/12/125006
  43. J.-T. Jang, H. Nah, J.-H. Lee, S.H. Moon, M.G. Kim, J. Cheon. Angew. Chem. Int. Ed. 48, 7, 1234 (2009). https://doi.org/10.1002/anie.200805149
  44. M.A. Daniele, M.L. Shaughnessy, R. Roeder, A. Childress, Y.P. Bandera, S. Foulger. ACS Nano 7, 1, 203 (2012)
  45. C. Liu, P. Huang. Soil Sci. Soc. Am. J. 63, 1, 65 (1999)
  46. T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legar, P. Bernhardt, C. Leuvrey, G. Rogez. Chem. Mater. 18, 18, 4399 (2006)
  47. S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen. J. Magn. Magn. Mater. 308, 210 (2007)
  48. Mossbauer Spectroscopy Applied to Magnetism and Materials Science / Eds G.J. Long, F. Grandjean. Springer Science+Business Media, N. Y. (1996). V. 1. 479 p
  49. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane. Bucharest. V. 197. (2013)
  50. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. FTT 64, 6, 712 (2022) (in Russian)
  51. V.G. Semenov, V.V. Panchuk. The Mossbauer Spectra Processing MossFit software. Private message
  52. M. Abbas, B. Parvatheeswara Rao, S.M. Naga, M. Takahashi, C. Kim. Ceram. Int. 39, 7, 7605 (2013). DOI: 10.1016/j.ceramint.2013.03.01
  53. F.L. Patterson. Phys. Rev. 56, 10, 978 (1939)
  54. E.C. Stoner, E. Wohlfarth. Phil. Trans. Royal Soc. London ser. A, Math. Phys. Sci. 240, 599 (1948). https://doi:10.1098/rsta.1948.0007
  55. M.A. Chuev. ZhETF 141, 4, 698 (2012) (in Russian)
  56. Magnetic Properties of Fine Particles / Eds J.L. Dormann, D. Fiorani. Elsevier Sci. Ltd. Series. North-Holland Delta (2012). 430 p
  57. S.W. da Silva, F. Nakagomi, M.S. Silva, A. Franco Jr, V.K. Garg, A.C. Oliveira, P.C. Morais. J. Nanopart. Res. 14, 4, 798 (2012). DOI: 10.1007/s11051-012-0798-4
  58. S. Ferrari, J.C. Aphesteguy, F.D. Saccone. IEEE Trans. Magn. 51, 6, 2900206 (2015)
  59. C.E. Johnson, J.A. Johnson, H.Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact. 237, 27 (2016). https://doi.org/10.1007/s10751-016-1277-6
  60. M. Srivastava, S.K. Alla, Sher Singh Meena, N. Gupta, R.K. Mandal, N.K. Prasad. New J. Chem. 42, 9, 7144 (2018)
  61. P. Masina, T. Moyo, H.M.I. Abdallah. J. Magn. Magn. Mater. 381, 41 (2015)
  62. F. van der Woude, G.A. Sawatzky. Phys. Rev. B 4, 9, 3159 (1971)
  63. L.T. Kuhn, A. Bojesen, L. Timmermann, M. Meedom Nielsen, S. Morup. J. Phys.: Condens. Matter 14, 49, 13551 (2002)
  64. S. Morup, J.A. Dumesic, H. Topsee. In: Applications of Mossbauer Spectroscopy / Ed. R.L. Cohen. Academic Press, N. Y. (1980). V. II. P. 1-53
  65. S. M rup, E. Brok, C. Frandsen. J. Nanomater. 720629 (2013)
  66. A.S. Kamzin. ZhETF 116, 5, 1648 (1999) (in Russian)
  67. S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatt, S.M. Yusuf, D.L. Sastry. Ceram. Int. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09.081
  68. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. J. Appl. Phys. 39, 2, 1204 (1968)
  69. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 2, 747 (1969)
  70. E. Lima, A.L. Brandl, A.D. Arelaro, G.F. Goya. J. Appl. Phys. 99, 8, 083908 (2006)
  71. J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971)
  72. J. Tuv cek, R. Zboril, D. Petridis. J. Nanosci. Nanotechnol. 6, 4, 926 (2006)
  73. M. Eibschuts, S. Shtrikman. J. Appl. Phys. 39, 2, 997 (1968)
  74. R.H. Lindquist, G. Constabaris, W. Kundig, A.M. Portis. J. Appl. Phys. 39, 2, 1001 (1968)
  75. S. M rup, F. B dker, P.V. Hendriksen, S. Linderoth. Phys. Rev. B 52, 1, 287 (1995)
  76. M.A. Polikarpov, V.M. Cherepanov, M.A. Chuev, S.Yu. Shishkov, S.S. Yakimov. J. Phys.: Conf. Ser. 217, 1, 012115 (2010). doi: 10.1088/1742-6596/217/1/012115
  77. S. M rup, C.A. Oxborrow, P.V. Hendriksen, M.S. Pedersen, M. Hanson, C. Johansson. J. Magn. Magn. Mater. 140-144, Part 1, 409 (1995).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru