Mg2Ge germanide under pressure: first principle evolutionary search results
Lunyakov Yu. V.1
1Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
Email: luniakov@iacp.dvo.ru

PDF
The search of optimal structures of magnesium germanide Mg2Ge under pressure has been performed using the software suite USPEX implementing the evolution algorithm combined with the density functional theory (DFT) approach. It is found that at pressures P≥15 GPa the triclinic P1 and P-1, monoclinic P21/c, orthorhombic Amm2 and trigonal P3m1 structures can coexist besides the well-known cubic Fm3m, orthorhombic Pnma and hexagonal P63/mmc ones. The new discovered structures are unstable due to potential relief complexity. They transform into orthorhombic Pnma structure at pressures P<14 GPa or hexagonal P63/mmc structure at pressures P>17 GPa. Keywords: Mg2Ge, crystal structure, phase transitions, hydrostatic pressure, evolutional search, Density Functional Theory.
  1. A.A. Nayeb-Hashemi, J.B. Clark. Bulletin Alloy Phase Diagrams 5, 466 (1984)
  2. H. Udono, H. Tajima, M. Uchikoshi, M. Itakura. Jpn. J. Appl. Phys. 54, 7S2, 07JB06 (2015)
  3. A. Vantomme, J.E. Mahan, G.L. James, P.B. Margriet, V. Bael, K. Temst, C.V. Haesendonck. Appl. Phys. Lett. 70, 9, 1086 (1997)
  4. H. Zhang, X. Zhong, J.C. Shaw, L. Liu, Y. Huang, X. Duan. Energy Environ Sci. 6, 9, 2621 (2013)
  5. Y. Liao, M. Fan, Q. Xie, Q. Xiao, J. Xie, H. Yu, S. Wang, X. Ma. Appl. Surf. Sci. 458, 360 (2018)
  6. J. Tani, H. Kido. Physica B 364, 1-4, 218 (2005)
  7. J. Tani, M. Takahashi, H. Kido. J. Alloys. Compd. 485, 764 (2009)
  8. M. Cahana, Y. Gelbstein. Intermetallics 120, 5, 106767 (2020)
  9. G. Murtaza, A. Sajid, M. Rizwan, Y. Takagiwa, H. Khachai, M. Jibran, R. Khenata, S. BinOmran. Mater. Sci. Semicond. Proc. 40, 429 (2015)
  10. G. Castillo-Hernandez, M. Yasseri, B. Klobes, S. Ayachi, E. Muller, J. Boor. J. Alloys. Compd. 845, 156205 (2020)
  11. L. Schlapbach, A. Zuttel. Nature 414, 6861, 353 (2001)
  12. P. Cannon, E.T. Conlin. Science 145, 3631, 487 (1964)
  13. F. Yu, J.-X. Sun, T.-H. Chen. Physica B 406, 9, 1789 (2011)
  14. M. Guezlane, H. Baaziz, Z. Charifi, A. Belgacem-Bouzida, Y. Djaballah. J. Sci. Adv. Mater. Devices 2, 1, 105 (2017)
  15. N.B. Bolotina, T.I. Dyuzheva, N.A. Bendeliani, V. Petricek, A.E. Petrova, V.I. Simonov. J. Alloys. Compd. 278, 1-2, 29 (1998)
  16. T.I. Dyuzheva, S.S. Kabalkina, L.F. Vereshchagin. DAN SSSR 228, 5, 1073 (1976) (in Russian)
  17. Y. Li, Y. Gao, Y. Han, C. Liu, C. Peng, Q. Wang, F. Ke, Y. Ma, C. Gao. Appl. Phys. Lett. 107, 14, 142103 (2015)
  18. Yu.V. Lunyakov. FTT 62, 5, 783 (2020) (in Russian)
  19. C.W. Glass, A.R. Oganov, N. Hansen. Comp. Phys. Commun. 175, 11-12, 713 (2006)
  20. A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu. Comp. Phys. Commun. 184, 4, 1172 (2013)
  21. A.R. Oganov, Y.M. Ma, Y. Xu, I. Errea, A. Bergara, A.O. Lyakhov. Proc. Natl. Acad. Sci. 107, 7646 (2010)
  22. A.R. Oganov, A.O. Lyakhov, M. Valle. Acc. Chem. Res. 44, 3, 227 (2011)
  23. G. Kresse, J. Furthmuller. Phys. Rev. B 54, 16, 11169 (1996)
  24. A. Jain, Sh. Ping Ong, G. Hautier, Wei Chen, W.D. Richards, S. Dacek, Sh. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. APL Materials 1, 1, 011002 (2013)
  25. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996)
  26. H.T. Stokes, D. Hatch. J. Appl. Cryst. 38, 1, 237 (2005)
  27. G. dela Flor, D. Orobengoa, E. Tasci, J.M. Perez-Mato, M.I. Aroyo. J. Appl. Cryst. 49, Part 2, 653 (2016)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru