Computer simulation of nanoscopic phase-inhomogeneous states and phase diagrams of HTSC cuprates and nickelates
Moskvin A. S. 1,2, Panov Yu. D. 1, Ulitko V.A. 1
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: alexander.moskvin@urfu.ru, vasiliy.ulitko@urufu.ru

PDF
More than 35 years of experience in the study of cuprate superconductors shows that the main characteristics of the phase diagram can only be obtained by taking into account mesoscopic static/dynamic phase inhomogeneity as a key property of these materials. Within a minimal model for the CuO2/NiO2 planes with the on-site Hilbert space reduced to only three effective valence centers [CuO4]7-,6-,5- (nominally Cu1+,2+,3+) with different conventional spin and different orbital symmetry we propose a unified non-BCS model that allows one to describe the main features of the phase diagrams of doped cuprates within the framework of a simple effective field theory. Using Maxwell's construction, the global nature of the electronic phase separation in the CuO2 planes of HTSC cuprates is established, which makes it possible to understand and explain many fundamental features of the physics of the normal and superconducting state of cuprates, including the mechanism of formation of the HTSC and pseudogap phase. The features of phase-inhomogeneous states and their evolution with temperature and doping degree, including the special role of the impurity potential in cuprates/nickelates with nonisovalent substitution, are considered for particular examples of the charge triplet model in the framework of the classical Monte Carlo method. Keywords: cuprates, nickelates, effective field theory, phase diagram, phase separation, Monte-Carlo.
  1. X. Bozovic, J. He, A. Wu, T. Bollinger. Nature 536, 309 (2016)
  2. J.E. Hirsch. Physica Scripta, 80, 3, 035702 (2009)
  3. B.P.P. Mallett, T. Wolf, E. Gilioli, F. Licci, G.V.M. Williams, A.B. Kaiser, N. Suresh, J.L. Tallon, N.W. Ashcroft. Phys. Rev. Lett. 111, 237001 (2013)
  4. S. Larsson. Physica C 460-462, 1063 (2007)
  5. M. Naito, Y. Krockenberger, A. Ikeda, H. Yamamoto. Physica C 523, 28 (2016)
  6. A.S. Moskvin. Phys. Rev. B 84, 075116 (2011)
  7. A.S. Moskvin. J. Phys.: Condens. Matter 25, 085601 (2013)
  8. A.S. Moskvin, Y.D. Panov. J. Supercond. Nov. Magn. 32, 61 (2019)
  9. A.S. Moskvin, Yu.D. Panov. FTT 61, 1603 (2019) (in Russian)
  10. A.S. Moskvin. Phys. Met. Metallogr. 120, 1252 (2019)
  11. A.S. Moskvin, Y.D. Panov. Phys. Solid State 62, 1554 (2020)
  12. A.S. Moskvin, Y.D. Panov. Condens. Matter, 6, 24 (2021)
  13. A.S. Moskvin, Y.D. Panov. JMMM 6, 24 (2022)
  14. T.M. Rice, L. Sneddon. Phys. Rev. Lett. 47, 689 (1981)
  15. D. Li, K. Lee, B.Y. Wang et al. Nature (London), 572, 624 (2019)
  16. Yu.D. Panov. Phys. Metals Metallogr. 120, 1276 (2019)
  17. Nikolay M. Plakida. High-Temperature Cuprate Superconductors. Experiment, Theory, and Applications, Springer, Berli--Heidelberg--N. Y.--Hong Kong--London Milan--Paris--Tokyo 2011
  18. L.G. Caron, G.W. Pratt. Rev. Mod. Phys. 40, 802 (1968)
  19. N. Luo, G.H. Miley. J. Phys. Condens. Matter 21, 025701 (2009)
  20. D.R. Harshman, J.D. Dow, A.T. Fiory. Phil. Mag. 91, 818 (2011)
  21. K. Kapcia, S. Robaszkiewicz, R. Micnas. J. Phys.: Condens. Matter 24, 215601 (2012)
  22. E. Arrigoni, G.C. Strinati. Phys. Rev. B 44, 7455 (1991)
  23. A.L. Rakhmanov, K.I. Kugel, A.O. Sboychakov. J. Supercond Nov. Magn. 33, 2405 (2020)
  24. D. Pelc, P. Popcevic, M. Pozek, M. Greven, N. Bariusic. Sci. Adv. 5 eaau4538 (2019)
  25. T. Adachi, T. Kawamata, Y. Koike. Condens. Matter, 2, 23 (2017)
  26. V.Z. Kresin, Yu.N. Ovchinnikov, S.A. Wolf. Phys. Rep. 431, 231 (2006)
  27. E.V.L. de Mello, E.S. Caixeiro. Phys. Rev. B 70, 224517 (2004)
  28. E.M. Motoyama G. Yu, I.M. Vishik, O.P. Vajk, P.K. Mang, M. Greven. Nature 445, 186 (2007)
  29. V. Sacksteder. J. Supercond. Nov. Magn. 33, 43 (2020)
  30. Yu.D. Panov, K.S. Budrin, A.A. Chikov, A.S. Moskvin. JETP Lett. 106, 242 (2017)
  31. Y.D. Panov, A.S. Moskvin, A.A. Chikov, K.S. Budrin. J. Low Temp. Phys. 187, 646 (2017)
  32. A.A. Chikov, Y.D. Panov, A.S. Moskvin, K.S. Budrin. Acta. Phys. Pol. A 133, 432 (2018)
  33. Y.D. Panov, V.A. Ulitko, K.S. Budrin, A.A. Chikov, A.S. Moskvin. J. Magn. Magn. Mater. 477, 162 (2019)
  34. Y.D. Panov, K.S. Budrin, V.A. Ulitko, A.A. Chikov, A.S. Moskvin. J. Supercond. Nov. Magn. 32, 1831 (2019)
  35. Yu.D. Panov, A.S. Moskvin, V.A. Ulitko, A.A. Chikov. FTT 61, 1676 (2019) (in Russian)
  36. R. Micnas, J. Ranninger, S. Robaszkiewicz. Rev. Mod. Phys. 62, 113 (1990)
  37. A.S. Moskvin, Y.D. Panov, F.N. Rybakov, A.B. Borisov. J. Supercond. Nov. Magn. 30, 43 (2017)
  38. A.S. Moskvin, Yu.D. Panov, F.N. Rybakov, A.B. Borisov. FTT 59, 2107 (2017) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru