Rydberg states of OH radical
Kornev A. S. 1, Chenov V. E. 1, Zon B. A. 1, Dorofeev D. L. 1, Kubelík P. 2, Ferus M. 2
1Voronezh State University, Voronezh, Russia
2J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Email: a-kornev@yandex.ru, wladislaw.chernov@gmail.com, zon@niif.vsu.ru, dmitrii.dorofeev@gmail.com, petr.kubelik@jh-inst.cas.cz, martin.ferus@jh-inst.cas.cz

PDF
We study Rydberg states of radical in adiabatic (rotational Born-Oppenheimer) approximation as well as in the inverse limit. The needed value, d = 0.833, of the OH+ cation's dipole moment was calculated using the RCCSD(T)/aug-cc-pV5Z. Our calculations show that a dipole moment of this magnitude influence weakly on the energies of the Rydberg states. The exception are the states originating from s-states in the central-symmetric field, which are influenced significantly by the cation dipole moment. In the inverse Born-Oppenheimer limit, we study in detail the dependence of the Rydberg spectrum upon the total angular momentum, J, of the molecule. This dependence substantially differs from the well-known dependence, ~ J(J+1), of the rotator energy on its total momentum. Keywords: polar molecules, multipole moments, polarizability, hydroxyl.
  1. Zvereva G.N. // Opt. Spectrosc. 2010. V. 108. N 6. P. 915-922. doi 10.1134/S0030400X10060135
  2. Korbut A.N., Kelman V.A., Zhmenyak Yu.V., Klenovskii M.S. // Opt. Spectrosc. 2014. V. 116. N 6. P 919-925. doi 10.1134/S0030400X14040146
  3. Shuaibov A.K., Minya A.I., Gomoki Z.T., Gritsak R.V. // Opt. Spectrosc. 2013. V. 114. N 2. P. 193-196. doi 10.1134/S0030400X13020264
  4. Belovolova L.V. // Opt. Spectrosc. 2020. V. 128. N 7. P 932-951. doi 10.21883/OS.2020.07.49565.64-20
  5. Wohler C., Grumpe A., Berezhnoy A.A., Shevchenko V.V. // Sci. Adv. 2017. V. 3. N 9. P. e1701286. doi 10.1126/sciadv.1701286
  6. Wohler C., Grumpe A., Bhatt M., Berezhnoy A.A. et al. // Astron. \& Astrophys. 2019. V. 630. P. L7. doi 10.1051/0004-6361/201935927
  7. Valiev R.R., Berezhnoy A.A., Sidorenko A.D., Merzlikin B.S., Cherepanov V.N. // Phys. Sol. State. 2017. V. 145. P. 38-48. doi 10.1016/j.pss.2017.07.011
  8. Grumpe A., Wohler C., Berezhnoy A.A., Shevchenko V.V. // Icarus. 2019. V. 321. P. 486-507. doi https://doi.prg/10.1016/j.icarus.2018.11.025
  9. Valiev R.R., Berezhnoy A.A., Gritsenko I.S., Merzlikin B.S. et al. // Astron. \& Astrophys. 2020. V. 633. P. A39. doi 10.1051/0004-6361/201936230
  10. Shelkovnikov A., Butcher R.J., Chardonnet C., Amy-Klein A. // Phys. Rev. Lett. 2008. V. 100. P. 150801. doi 10.1103/PhysRevLett.100.150801
  11. Kozlov M.G. // Phys. Rev. A. 2009. V. 80. P. 022118. doi 10.1103/PhysRevA.80.022118
  12. Flambaum V.V., Wiringa R.B. // Phys. Rev. C. 2009. V. 79. P. 034302. doi 10.1103/PhysRevC.79.034302
  13. Kanekar N., Langston G.I., Stocke J.T., Carilli C.L., Menten K.M. // Astrophys. J. Lett. 2012. V. 746. N 2. P. L16. doi 10.1088/2041-8205/746/2/l16
  14. Wall T.E. // J. Phys. B: At. Mol. Opt. Phys. 2016. V. 49. N 24. P. 243001. doi 10.1088/0953-4075/49/24/243001
  15. Safronova M.S., Budker D., DeMille D., Kimball D.F.J. et al. // Rev. Mod. Phys. 2018. V. 90. P. 025008. doi 10.1103/RevModPhys.90.025008
  16. Seaton M.J. // Proc. Phys. Soc. (London). 1966. V. 88. N 4. P. 801-814. doi 10.1088/0370-1328/88/4/302
  17. Seaton M.J. // Proc. Phys. Soc. (London). 1966. V. 88. N 4. P. 815-832. doi 10.1088/0370-1328/88/4/303
  18. Fano U. // Phys. Rev. A. 1970. V. 2. P. 353-365. doi 10.1103/PhysRevA.2.353
  19. Greene C., Fano U., Strinati G. // Phys. Rev. A. 1979. V. 19. P. 1485-1509. doi 10.1103/PhysRevA.19.1485
  20. Greene C.H. // Phys. Rev. A. 1979. V. 20. P. 656-669. doi 10.1103/PhysRevA.20.656
  21. Jungen C., Atabek O. // J. Chem. Phys. 1977. V. 66. N 12. P. 5584-5609. doi 10.1063/1.433881
  22. Jungen C., Dill D. // J. Chem. Phys. 1980. V. 73. N 7. P. 3338-3345. doi 10.1063/1.440528
  23. Jungen C., Miescher E. // Can. J. Phys. 1969. V. 47. N 17. P. 1769-1787. doi 10.1139/p69-225
  24. Murphy J.E., Friedman-Hill E., Field R.W. // J. Chem. Phys. 1995. V. 103. N 15. P. 6459-6466. doi 10.1063/1.470423
  25. Arif M., Jungen C., Roche A.L. // J. Chem. Phys. 1997. V. 106. N 10. P. 4102-4118. doi 10.1063/1.473124
  26. Jungen C., Roche A.L. // Can. J. Phys. 2001. V. 79. N 2-3. P. 287-298. doi 10.1139/p00-099
  27. Altunata S.N., Coy S.L., Field R.W. // J. Chem. Phys. 2005. V. 123. N 8. P. 084319. doi 10.1063/1.2005041
  28. Altunata S.N., Coy S.L., Field R.W. // J. Chem. Phys. 2006. V. 124. N 19. P. 194302. doi 10.1063/1.2192518
  29. Kay J.J., Coy S.L., Wong B.M., Jungen C., Field R.W. // J. Chem. Phys. 2011. V. 134. N 11. P. 114313. doi 10.1063/1.3565967
  30. Jakubek Z.J., Field R.W. // Phys. Rev. Lett. 1994. V. 72. P. 2167-2170. doi 10.1103/PhysRevLett.72.2167
  31. Jakubek Z.J., Field R.W. // J. Mol. Spectrosc. 1996. V. 179. P. 99-124. doi 10.1006/jmsp.1996.0189
  32. Jakubek Z.J., Field R.W. // Philos. Trans. R. Soc. London, Ser. A. 1997. V. 355. N 1729. P. 1507-1526. doi 10.1098/rsta.1997.0073
  33. Jakubek Z.J., Field R.W. // J. Mol. Spectrosc. 2001. V. 205. N 2. P. 197 - 220. doi 10.1006/jmsp.2000.8264
  34. Raouafi S., Jeung G.-H., Jungen C. // J. Mol. Spectrosc. 1999. V. 196. N 2. P. 248-258. doi 10.1006/jmsp.1999.7884
  35. Li J., Liu Y., Moss D.B., Gittins C.M. et al. // J. Mol. Spectrosc. 1999. V. 193. N 2. P. 403-411. doi 10.1006/jmsp.1998.7746
  36. Clevenger J. O., Harris N.A., Field R.W., Li J. // J. Mol. Spectrosc. 1999. V. 193. N 2. P. 412-417. doi 10.1006/jmsp.1998.7755
  37. Elfimov S.V., Dorofeev D.L., Zon B.A. // Phys. Rev. A. 2014. V. 89. P. 022507. doi 10.1103/PhysRevA.89.022507
  38. Zon B.A. // JETP. 1992. V. 75. N 1. P. 36-46
  39. Watson J. K.G. // Mol. Phys. 1994. V. 81. N 2. P. 277-289. doi 10.1080/00268979400100191
  40. Zon B.A. // Phys. Lett. A. 1995. V. 203. N 5-6. P. 373-375. doi 10.1016/0375-9601(95)00447-B
  41. Kozlov S.V., Pazyuk E.A., Stolyarov A.V. // Phys. Rev. A. 2016. V. 94. P. 042510. doi 10.1103/PhysRevA.94.042510
  42. Kozlov S.V., Pazyuk E.A., Stolyarov A.V. // Opt. Spectrosc. 2017. V. 123. N 5. P 676-681. doi 10.7868/S0030403417110149
  43. Pazyuk E.A., Pupyshev V.I., Zaitsevskii A.V., Stolyarov A.V. // Russ. J. Phys. Chem. 2019. V. 93. N 10. P 1865-1872
  44. Dorofeev D.L., Elfimov S.V., Zon B.A. // Phys. Rev. A. 2012. V. 85. P. 022509. doi 10.1103/PhysRevA.85.022509
  45. Dorofeev D.L., Zon B.A. // JETP. 1996. V. 86. N 3. P 485-489
  46. Sun G., Zhou W., Zheng X., Qin Y. et al. // Mol. Phys. 2021. V. 119. N 1-2. P. e1837974. doi 10.1080/00268976.2020.1837974
  47. Chervinskaya A.S., Elfimov S.V., Dorofeev D.L., Chernov V.E., Zon B.A. // Opt. Spectrosc. 2017. V. 122. N 5. P. 699-704. doi 10.7868/S0030403417050051
  48. Landau L.D., Lifshitz E.M. Quantum Mechanics, Nonrelativistic Theory. Oxford: Pergamon, 1991
  49. Chernov V.E., Dolgikh A.V., Zon B.A. // Phys. Rev. A. 2005. V. 72. N 5. P. 052701. doi 10.1103/PhysRevA.72.052701
  50. Danilyan A.V., Chernov V.E. // Opt. Spectrosc. 2008. V. 104. N 1. P 21-39. doi 10.1134/S0030400X08010050
  51. Frisch M.J. Gaussian 16 Revision A.02. 2016. Gaussian Inc. Wallingford CT
  52. Werner H.-J., Knowles P.J., Manby F.R., Black J.A. et al. // J. Chem. Phys. 2020. V. 152. N 14. P. 144107. doi 10.1063/5.0005081
  53. Valiev M., Bylaska E.J., Govind N., Kowalski K. et al. // Comput. Phys. Commun. 2010. V. 181. N 9. P. 1477-1489. doi 10.1016/j.cpc.2010.04.018
  54. Kobus J. // Comput. Phys. Commun. 2013. V. 184. N 3. P. 799-811. doi 10.1016/j.cpc.2012.09.033
  55. Radzig A.A., Smirnov B.M. Reference data on atoms, molecules and ions. Berlin: Springer-Verlag, 1985. 466 p. doi 10.1007/978-3-642-82048-9
  56. Buckingham A.D., Longuet-Higgins H.C. // Mol. Phys. 1968. V. 14. N 1. P. 63-72. doi 10.1080/00268976800100051
  57. Gramada A., Bourne P.E. // Phys. Rev. E. 2008. V. 78. P. 066601. doi 10.1103/PhysRevE.78.066601
  58. Chervinskaya A.S., Dorofeev D.L., Elfimov S.V., Zon B.A. // Mol. Phys. 2020. V. 118. N 7. P. e1659433
  59. NIST computational chemistry comparison and benchmark database (release 21). 2020. URL: http://cccbdb.nist.gov (online; accessed: August 2020)
  60. Werner H.-J., Rosmus P., Reinsch E.-A. // J. Chem. Phys. 1983. V. 79. N 2. P. 905-916. doi 10.1063/1.445867
  61. Adamowicz L. // J. Chem. Phys. 1988. V. 89. N 10. P. 6305-6309. doi 10.1063/1.455396
  62. Kornev A.S., Chernov V.E., Zon B.A. // Opt. Spectrosc. 2021. V. 129. N 1. P 18-22. doi 10.21883/OS.2021.01.50434.224-20
  63. Watts J.D., Gauss J., Bartlett R.J. // Chem. Phys. Lett. 1992. V. 200. N 1. P. 1-7. doi 10.1016/0009-2614(92)87036-O
  64. Eyler E.E. // Phys. Rev. A. 1986. V. 34. P. 2881-2888. doi 10.1103/PhysRevA.34.2881
  65. Kornev A.S., Zon B.A. // J. Phys. B: At. Mol. Opt. Phys. 2003. V. 36. N 19. P. 4027-4034. doi 10.1088/0953-4075/36/19/011

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru