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Rydberg states of OH radical
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We study Rydberg states of radical in adiabatic (rotational Born−Oppenheimer) approximation as well as in

the inverse limit. The needed value, d = 0.833, of the OH+ cation’s dipole moment was calculated using the

RCCSD(T)/aug-cc-pV5Z. Our calculations show that a dipole moment of this magnitude influence weakly on the

energies of the Rydberg states. The exception are the states originating from s-states in the central-symmetric field,

which are influenced significantly by the cation dipole moment. In the inverse Born–Oppenheimer limit, we study

in detail the dependence of the Rydberg spectrum upon the total angular momentum, J, of the molecule. This

dependence substantially differs from the well-known dependence, ∼ J(J + 1), of the rotator energy on its total

momentum.
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Introduction

Processes involving highly excited (Rydberg) states of

atoms and molecules are important in many branches

of physics and chemistry. This also applies to the OH

radical, which is present in appreciable amounts in the

atmosphere of the Earth and other planets. The hydroxyl

radical is formed in the atmosphere as a result of pho-

tolysis [1] or dissociative excitation of water molecules

by free electrons [2]. Note that an additional mechanism

for the formation of the hydroxyl radical is possible in

a gas-discharge plasma due to the energy transfer from

metastable argon atoms to water molecules [3]. The OH

radical promotes the formation of nitrogen oxides from

atmospheric nitrogen [4]. OH clouds occupy significant

volumes in the Universe, so the observation of Rydberg OH

spectra can provide useful information about the physical

conditions in these objects. Daily fluctuations in the OH

absorption in the lunar atmosphere in the near-IR range

can provide important information about the formation of

water molecules as a result of the absorption of solar wind

protons [5], the fall of meteorites or comets with an icy

nucleus [5], or as a result of photolysis [7–9]. Besides,

this radical is considered as one of the candidates for

determining the change in world constants over time (see,
for example, [10–15]).

One of the main problems associated with finding the

Rydberg spectra of polar molecules is due to the mixing by

the dipole moment of the molecular core of the states of

the Rydberg electron (RE) with different orbital momenta.

Several solutions of this problem are known, for example,

the multichannel quantum defect theory (MQDT) proposed

by Seaton [16,17]. This theory has been developed by many

authors, primarily for non-polar molecules [18–22]. Later,

MQDT was applied to some polar molecules, in particular,

NO [23], CaF [24–29], BaF [15,30–33], CaCl [34–36],
SO [37] etc.

MQDT is applicable in the region of large quantum

numbers of RE, n ≫ 1, and has a relatively high accuracy

in this region. However, in some cases, computationally

simpler approaches can be applied. One of these approaches

is based on an approximate representation of the potential

of the molecular core as a superposition of the potentials

of a point charge and a point dipole. Under this approach

analytical solutions of the Schrödinger equation for RE were

obtained in two limiting cases.

One of these limiting cases is the adiabatic approxima-

tion, also known as the Born−Oppenheimer approximation

(BOA), when the core rotation is much slower than the

motion of RE. The corresponding analytical solution was

given in the papers [38,39]. Just in the papers [38,39] RE
states with integer orbital momenta were used to construct

states with some effective non-integer, in the general case,

orbital momenta which take into account the effect of states

mixing by the dipole moment of the core.

The second limiting case is the inverse

Born−Oppenheimer approximation (IBOA), when the

core is considered to be quickly rotating compared to

the RE motion. Such an extreme case is possible if the

principal quantum number of RE is large enough. The

analytical solution to the Schrödinger equation for IBOA

was obtained in [40]. When going from BOA to IBOA,

a radical rearrangement of the RE spectrum occurs, in

particular, its dependence on the dipole moment of the

core. We emphasize that IBOA in our case is associated

with the slow motion corresponding to electronic degrees
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of freedom compared to rotational, but not vibrational

one, as it is usually understood for low-excited states of

molecules [41–43].

Calculations of the Rydberg spectra of the SO molecule

in the limit cases of BOA and IBOA are presented in [44].
In this work, similar calculations are carried out for OH

radical.

As the principal quantum number of RE increases, the

level shifts generated by the quantum defect decrease in

absolute value. When they become comparable with the

splitting of core 3-doublet, anomalies can be observed in

the Rydberg spectrum of the polar molecule, which were

discussed in the general case in [45], and for SO molecule

in the paper [44]. In the present paper these anomalies are

not considered. Note only that it is the transition between

3-double levels in the OH radical (wavelength ≃ 18 cm)
that was analyzed in the papers [10–15].

Also, this paper does not consider the potential energy

curves for the OH molecule and its vibrational spectra.

Correspondingly, spectrum perturbations associated with

predissociation are not analyzed. The predissociation of the

A 26+-states of the OH radical was studied theoretically and

experimentally in a number of papers (see, for example, [46]
and references therein), however, the predissociation of

higher Rydberg states, which are the subject of this paper,

requires special consideration.

In this paper, except of specified cases, the atomic system

of units is used.

Main equations

Adiabatic limit (BRA)

To take into account the mixing of RE states with

different orbital momenta l and dipole moment d, in

papers [38,39,47] instead of the usual spherical functions

Ylm(θ, ϕ) the angular functions are introduced

ZBOA(d; θ, ϕ) =

∞
∑

l=|m|

alYlm(θ, ϕ), (1)

where m is the projection of the orbital momentum of

RE onto the direction z of the dipole moment of the

molecular core, and the coefficients al are the eigen vectors

of the linear tridiagonal system of homogeneous algebraic

equations corresponding to the eigen values L:

l(l + 1)al + 2d
∑

l ′=l±1

(

2l ′ + 1

2l + 1

)1/2

×Cl0
l ′010C

lm
l ′m10al ′ = Lal , |m| ≤ l < ∞. (2)

The eigen values L and the eigen vectors of the system

of equations (2) will be numbered by integers L varying

within the same limits as the summation index l in (2),

namely |m| ≤ L < ∞. Moreover, we choose the numbering

so that for d → 0

L
(L) → L(L + 1), a(L)

l → δLl . (3)

Generally, it is convenient to introduce the effective

orbital momenta L̃ defined by the relation

L
(L) = L̃(L̃ + 1), L̃ =

√

L(L) + 1/4− 1/2. (4)

The RE spectrum is expressed in terms of L̃ by the

formula

ενL = −1/2ν2, ν = nr + L̃ + 1. (5)

Here, nr = 0, 1, . . . is the radial quantum number. Note

that for L
(L) < −1/4, which is possible for rather large

dipole moment, the RE spectrum, and with it the spectrum

of the entire molecule, becomes complex. This means, as

known, the instability of the system, namely, the RE fall

to the center of the molecular coordinate system [48]. As

applied to the problem considered here, the occurrence of

such behavior indicates the inapplicability of the point core

approximation for states with L
(L) < −1/4. This problem

is considered in more detail, for example, in the paper [49].
The contribution of the quadrupole moment and core po-

larizability to the quantum defect in the first approximation

of perturbation theory:

µQ =
2(L(L + 1) − 3m2)

L(L + 1)(2L − 1)(2L + 1)(2L + 3)
Qz z, (6)

µpol =
12(1 − L(L + 1)/3n2)

L(L + 1)(2L − 1)(2L + 1)(2L + 3)

×

(

α

2
+

γ

3

L(L + 1) − 3m2

(2L + 1)(2L + 3)

)

, (7)

α =
2α⊥ + α‖

3
, γ = α‖ − α⊥, n = nr + L + 1.

The above expressions for µQ and µpol are valid for

L 6= 0. For L = 0, we have µQ = 0, and the corresponding

expression for µpol turns out to be divergent, which also

indicates that the point core approximation is inapplicable

in this case.

Inverse rotational Born−Oppenheimer
approximation (IBOA)

The solution to the Schrödinger equation for the electron

moving in a Coulomb field and in the field of a rapidly

rotating point dipole was found in paper [40] for a

symmetric top. For the diatomic molecule considered in

this paper the general formulas are somewhat simplified.

According to paper [40] the wave function of molecule in

IBOA is sought in the form:

9
jλ
JM =

√

2 j + 1

8π2
R(r )

∑

l j zm

CJM
j j z lmD j

ω j z
(�)Ylm(r/r )a̹

l . (8)
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Here, the index ̹ denotes the set of indices (J, j , ω),
J is the total moment of the molecule, M is its projection

onto the z axis of the laboratory coordinate system (LCS),
j , j z is total moment of the core and its projection onto

the z axis of LCS respectively, ω is projection of core

moment on molecule axis coinciding with direction of

dipole moment, D is matrix of finite rotations depending on

the Euler angles of the core �, R(r ) is radial wave function

of RE. Unlike [38,39], the solution to the Schrödinger

equation obtained in [40] was reduced to finding the eigen

values L̹ and the eigen vectors {a̹
l } of finite system

of linear algebraic equations defining the angular function

ZIBOA(d; θ, ϕ), similar to (2):

l(l + 1)a̹
l + 2(−1)2 j dω

[

(2 j + 1)(2l + 1)

j ( j + 1)

]1/2

×
∑

l ′=l±1

Cl ′0
l010W( j1Jl′; j l )a̹

l ′ = L̹a̹
l ,

|J − j | ≤ l ≤ J + j , (9)

where W are Racah coefficients. The dependence of the

eigen values L̹ on J, which follows from this formula,

determines the dependence of the molecule energy on

its total moment. Since we do not consider the RE

spin, it follows from the properties of the Clebsch−Gordan

coefficient in formula (8) that the total momentum J of

molecule is integer or half-integer, depending on whether

the core moment j is integer or half-integer.

The eigen values and eigen vectors of the system of

equations (9) will also be enumerated by integers L, which

now vary within |J − j | ≤ L ≤ J + j . By analogy with

formulas (3), (5)

L
(L)
̹ → L(L + 1), a̹(L)

l → δLl , at d → 0,

ε̹νL = −1/2ν2, ν = nr + L + 1, nr = 0, 1, . . . (10)

Note that for ω = 0, which is possible for integer j , equa-
tions (9) give L̹ = l(l + 1), which differs from limiting

values (10) by designations only. In other words, at ω = 0

the dipole moment does not affect the RE motion. The

physical meaning of this fact is quite clear: at ω = 0 the

dipole moment of the core is perpendicular to the axis of

its rotation, and the value of the dipole moment is averaged

when the core rotates rapidly.

The total energy of the molecule is given by

E̹νL = B j( j + 1) + ε̹νL, (11)

where B is rotational constant of the core. Since ε̹νL < 0, it

follows from formula (11) that below each rotational level of

the core, with moment j , there is a Coulomb-like spectrum

of RE split in L and J. Equations (2), (9) are the main

formulas in the present work. After their solution, the

Rydberg spectra are found by formulas (5), (10). More

complex cases of the relationship between intramolecular

angular momentums are considered in [50].

Dipole and quadrupole moments
and polarizability of radical-cation OH+

To solve equations (2), (9), it is necessary to know the

dipole moment of the OH+ radical, as well as its quadrupole

moment and polarizability (to estimate quantum defects

using formulas (6) and (7)). We used two groups of

methods to calculate the multipole moments.

In the first case, the calculation was carried out using

modern packages for quantum-chemical calculations: Gaus-

sian [51], MOLPRO [52] and NWChem [53]. Such methods

as density functional theory (DFT), Møller−Plesset Per-

turbation Theory (MP2), coupled cluster method (CCSD),
configuration interaction (QCISD) were used. We used such

an equilibrium internuclear distance Re, which was obtained

by optimization under the method used.

In the second case, for calculation we used the

one-configuration finite-difference Hartree−Fock method

x2DHF [54], which gives the Slater asymptotic form of the

radial wave functions. A reference value [55] was taken

for Re.

The calculations were carried out in the system of the

nuclear center of charge. For a different choice of the

coordinates origin, which is important for calculating the

dipole moments of systems with excess charge, see [56–58].
z axis was chosen to be directed from O to H. Then, for a

given electron density ρe(r), for the dipole and quadrupole

moments, we have, respectively

d = −

∫

zρe(r) d
3r,

Qz z =
8

9
R2

e −
1

2

∫

ρe(r)(3z2 − r 2) d3r. (12)

The first term in Qz z is due to the contribution of positive

nuclear charges. The second term is determined by the

electronic configuration. We consider the ground elec-

tronic term X36− with configuration 1σ 22σ 23σ 21π+11π−1,

where π-electrons are unpaired and form a spin triplet.

The static polarizability is calculated here by numerical

differentiating of the induced dipole moment with respect

to the external field strength.

The calculation results are given in Table 1. For

quantum chemical calculations, such methods/basis sets

were used that for the dipole moment of the neutral

radical OH ensure difference from the experimental value

d(OH) = 0.6531 a.u., recommended by NIST [59], less than
1%. For the moments d and Qz z in the OH+ ion, lines 1−6

show the results of calculations with methods/basis sets

that give the equilibrium internuclear distance Re, which

differs from the tabular Re = 1.029 Å within 0.1%. The

results in lines 1−5 were obtained using the MOLPRO

package, and in line 6 with the MP2 method — using

the Gaussian package. Methods 3−6 belong to the class

of post-Hartree−Fock. The methods of coupled clusters

CCSD and the configurations interaction QCISD are non-

perturbative multi-configuration methods.
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Table 1. Equilibrium internuclear distance, permanent dipole d and quadrupole Qzz moments, and polarizabilities of OH+ radical cation

in the system of nuclear center of charge. z axis is directed from O to H; NIST values are taken from the database [59], other values are
calculated in this paper (

”
t.p.“)

� Method / basis set Re, Å d, a.u. Qzz, a.u. Polarizability, a.u.

t.p. NIST t.p. NIST α⊥ α‖ α

1 wB97X-D/ 1.0289 0.7904 1.3405 3.4563 4.9698 3.9608

d-aug-cc-pVQZ

2 B97D3/ 1.0292 0.7954 0.784 1.3351 1.342 2.9949 4.9224 3.68 [59]
Def2TZVPP

3 QCISD/ 1.0294 0.8410 0.841 1.3660 3.0566 4.7472 3.6201

6-31G(2df,p)

4 CCSD/ 1.0290 0.8338 0.792 1.3507 1.334 3.4265 5.0139 3.9556

aug-cc-pVTZ

5 CCSD/ 1.0291 0.8331 0.792 1.3526 1.335 3.4191 5.0041 3.9474

d-aug-cc-pVTZ

6 MP2/ 1.0276 0.8299 1.3435 1.326 3.4530 4.9146 3.94 [59]
d-aug-cc-pVDZ

7 RCCSD/ 1.0289 0.8343 1.3837 3.4558 5.0352 3.9823

aug-cc-pVTZ

8 RCCSD/ 1.0290 0.8336 1.3853 3.4470 5.0254 3.9731

d-aug-cc-pVTZ

9 CCSD+T(CCSD)/ 1.0277 0.7912 1.319 3.4414 4.9984 3.9604

aug-cc-pVTZ

10 CCSD+T(CCSD)/ 1.0285 0.7915 1.322 3.4400 4.9862 3.9554

d-aug-cc-pVTZ

11 MCSCF [60] 1.031 0.913

12 x2DHF 1.029 [54] 0.8394 1.4336

We also studied additionaly RCCSD methods that prevent

”
spin contamination“ in systems with open shells. As

lines 7, 8 show, this leads to a change in the dipole moment

by less than 0.1% and in the quadrupole moment — by

∼ 1%.

DFT methods reduce the calculation time by 2−3 orders

and give for Re results comparable in accuracy (< 0.1%)

with RCCSD(T) results.

Perturbative account for triple excitations of electrons by

CCSD(T) and QCISD(T) methods led to a change in the

equilibrium internuclear distance by several percent. The

reason for this discrepancy may be the specifics of these

methods use (see below).

Another multi-configuration method for accounting for

triple excitations CCSD+T(CCSD), performed using the

aug-cc-pVTZ basis set in the NWChem package, which

proved to be efficient, also gave acceptable values for

internuclear distances Re in OH and OH+, and for the

dipole moment OH. However, the dipole moment of the

radical cation OH+ (lines 9, 10 in Table 1) turns out

to be smaller and comparable to that obtained by density

functional methods.

We also tested the capabilities of the many-body perturba-

tion theory of 4th order MBPT4 implemented in NWChem

package. Despite the good reproduction of the internuclear

distance, the dipole moment of the neutral radical OH

turned out to differ from the tabulated value by ∼ 10 %

when using correlation-consistent basis sets. Therefore, we

did not use the MBPT4 method to calculate the multipole

moments of the radical cation OH+.

For comparison, the values of Re and d are also

given, they were obtained in the paper [61] by the mul-

ticonfiguration self-consistent field method MCSCF within

the Rutaan−Hartree−Fock approach [60] (line 11 in

Table 1). In the cited paper 7 configurations were involved,

which in Cartesian coordinates look like: 3σ 2 1πx 1πy ,

4σ 2 1πx 1πy , 3σ 2 {1πx 2πy − 1πy 2πx}, 3σ 2 2πx 2πy ,
1(3σ 4σ ) {1πx 2πy − 1πy 2πx},

1(3σ 4σ ) 1πx 1πy ,
3(3σ 4σ ) 3(1πx 1πy).
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Line 12 in Table 1 shows the data obtained by the finite-

difference Hartree−Fock method in spheroidal coordinates

proposed in the paper [54].

Unfortunately, the dipole and quadrupole moments

found by various post-Hartree−Fock methods: coupled

clusters CCSD, configurations interactions QCISD, and

Müller−Plesset MP2 (lines 3−6 in Table 1), with the basis

sets used in [59] for OH, have a rather large spread of values

(d = 0.834± 0.004, Qz z = 1.364± 0.016).

Nevertheless, the coupled clusters method mentioned

above is recognized as one of the most accurate approaches

in modern quantum chemistry. The accuracy of calculation

of most molecular parameters, in particular, polarizabil-

ities, is comparable with the accuracy of experimental

methods [62]. However, the correlation energy cannot

be correctly taken into account even by the CCSD(T)
method in small and medium size basis sets. For this

reason, using CCSD(T)/aug-cc-pVTZ worsened the result

for the equilibrium internuclear distance compared to

CCSD/aug-cc-pVTZ.

Table 2 lists the equilibrium internuclear distances,

multipole moments, and static polarizability of the radical

cation OH+ calculated by the wB97X−D density functional

theory and by RCCSD(T) method with different basis sets

x-aug-cc-pVXZ.

The RCCSD method demonstrates good convergence Re,

d, and Qz z of the radical cation OH+ with increasing

quality parameter X in the basis set x-aug-cc-pVXZ. There

is no significant difference between ∗-pV5Z and ∗-pV6Z.

For the radical cation OH+ the polarizability is practically

insensitive to the number of diffuse functions x per orbital.

There are no differences already between x =1 (aug-∗) or 2
(d-aug-∗).

For multipole moments the convergence of both methods

also takes place. However, DFT gives underestimated values

compared to RCCSD(T) by 5% for dipole moments and by

3% for quadrupole moments.

For static polarizabilities the results of both methods

are comparable. However, in contrast to RCCSD(T) the

convergence of DFT results with increasing X turns out to

be slower and nonmonotonic.

The equilibrium internuclear distance Re = 1.0280 Å dif-

fers from the that proposed by NIST [59] by less than

0.1%. The importance of the exact reproduction of the

parameter Re is shown in Table 2 for calculating the

multipole moments as functions of the internuclear distance

by the method RCCSD(T)/aug-cc-pV5Z. It is easy to

see that change in the internuclear distance in the vicinity

of the equilibrium value by 10% leads to change in the

dipole moment by the same order of magnitude, and in the

quadrupole moment by ∼ 34%. Such sensitivity of moments

to the choice of internuclear distance was noted in [63].

Thus, to calculate the OH+ parameters where

not otherwise stated, it is sufficient to limit by

RCCSD(T)/aug-cc-pV5Z. The values of the multipole

moments, d = 0.833, Qz z = 1.382, will be used further

Table 2. Equilibrium internuclear distance (in Å), permanent

dipole d and quadrupole Qzz moments of the radical-cation OH+

in the system of nuclear center of charge and static polarizability

(all in atomic units); z axis is directed from O to H; basis sets

x-aug-cc-pVXZ

x X Re d Qzz α⊥ α‖ α = 1
3
Spα

wB97X−D

1 T 1.0299 0.7907 1.3381 3.4606 5.0069 3.9760

Q 1.0289 0.7904 1.3405 3.4563 4.9698 3.9608

5 1.0286 0.7904 1.3391 3.4668 4.9735 3.9690

6 1.0286 0.7900 1.3392 3.4621 4.9685 3.9642

2 T 1.0300 0.7900 1.3415 3.4554 4.9911 3.9673

Q 1.0289 0.7904 1.3392 3.4551 4.9686 3.9596

5 1.0286 0.7903 1.3392 3.4669 4.9734 3.9691

6 1.0286 0.7900 1.3392 3.4622 4.9690 3.9645

RCCSD(T)

1 T 1.0312 0.8366 1.3933 3.4558 5.0352 3.9823

Q 1.0283 0.8329 1.3839 3.4328 4.9742 3.9466

5 1.0280 0.8328 1.3824 3.4250 4.9572 3.9357

6 1.0280 0.8327 1.3824 3.4241 4.9537 3.9340

2 T 1.0313 0.8359 1.3949 3.4470 5.0254 3.9731

Q 1.0283 0.8329 1.3839 3.4285 4.9721 3.9430

5 1.0280 0.8328 1.3826 3.4247 4.9572 3.9355

6 1.0280 0.8328 1.3824 3.4236 4.9539 3.9337

Table 3. The functions of the dipole d and quadrupole Qzz

moments of the radical-cation OH+ in the nuclear center of charge

system found within the CCSD(T)/aug-cc-pV5Z; axis z is directed

from O to H

R, Å d, a.u. Qzz, a.u.

0.9252 0.7326 0.9804

0.9509 0.7552 1.0736

0.9766 0.7787 1.1712

1.0023 0.8031 1.2729

1.0280 0.8328 1.3824

1.0537 0.8548 1.4892

1.0794 0.8820 1.6040

1.1051 0.9102 1.7231

1.1308 0.9394 1.8468
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to calculate the parameters of the Rydberg states of OH

radical.

Rydberg spectra

Region of BOA

In this and the next Sections we consider the contribution

of the dipole moment of the molecular core to the Rydberg

spectra of OH radical. RE states are usually divided

into penetrating and non-penetrating. For the former one

the short-range interaction of RE with the cation core is

essential, while for the latter one this interaction is small.

It is known from the literature (see, for example, [25,64])
that for diatomic molecules, RE states with orbital momenta

l ≥ 3 can be considered as non-penetrating. In the BOA

limit this means that the use of equations (2) for calculating
the RE spectra at |m| ≥ 3 is quite justified. Note that the

description of penetrating states was carried out in some

papers within the framework of rather simple models (for
atoms, for example, see [65]).

Table 4 lists the values of the parameters of the Rydberg

states of OH radical in the BOA limit. Projections from the

interval 0 ≤ |m| ≤ 2 correspond to penetrating states. For

a possible comparison of RE parameters with these values

of |m| with experiment, it is necessary to take into account

the short-range interaction of RE with the core. As can be

seen, for a state with m = 0 the effective orbital momentum

L̃ corresponding to L = 0 is complex. As mentioned above,

this is due to violation of the point dipole approximation.

For non-penetrating states, we present the results for only

one value |m| = 3, since it is clear that already in this case

the difference between the effective orbital momentum L̃
and the principal quantum number ν from integer values is

small. The same conclusion is applied to the contribution of

the quadrupole moment to the principal quantum number

ν . For the SO molecule this contribution was considered in

paper [44], and turned out to be small in the above sense.

Region of IBOA

Let’s now analyze the IBOA region. Table 5 lists the

parameters of the Rydberg states similar to those given

in Table 4. Since the ground state of the OH+ cation is

a triplet, the projection of the total angular momentum

onto the axis of the molecule is ω ≥ 1. As can be

seen, the dipole moment of the core affects the states

L = 0 most significantly, which is quite natural. In the

case of ω = j = J = 2 for this state, even a
”
drop to

the center“occurs, which relates to the complexity of the

effective orbital momentum L̃ and the inapplicability of the

point dipole approximation. Note the negativity of L̃ for

L = 0 for other values of the parameters ω, j , J. This is due
to the fact that at L = 0 there is practically no centrifugal

repulsion of RE from the core, and the dipole moment

attracts RE to the core.

1 2 3

J

–0.118

–0.120

–0.122

–0.124

–0.126

–0.128

–0.130

e
ϰ

n
L

RE energy ε̹νL vs. total momentum of molecule J. Solid line:

ω = 1, dashed line: ω = 2. In both cases j = 2, L = 1.

Molecule energy vs. total angular momentum

The Figure shows the RE energies, determined by the

formula (10), vs. total momentum of the molecule J for

the values ω = 1, 2; j = 2, L = 1. Numerical data are

taken from Table 5. As can be seen, these dependencies

fundamentally differ from ∼ J(J + 1) dependencies typical

for rotator energies. Unfortunately, obtaining the values of

rotational energies for larger values J is not possible due to

the small difference of RE spectrum from the pure Coulomb

spectrum.

Conclusion

The calculations performed show that for molecules with

dipole moment of the same order as that of the OH radical,

d ≃ 0.8 a.u., the mixing of the states of Rydberg electron

with different orbital momenta is relatively small. An excep-

tion in the range of applicability of the Born−Oppenheimer

approach is the states with m = L = 0, for which, however,

the point dipole approximation is inapplicable. A similar

Table 4. Parameters of Rydberg states of OH radical in the BOA

limit, the quantum-chemical calculation of the static polarizability

of OH+ was performed by method RCCSD(T)/aug-cc-pV6Z

|m| L L̃ µd = L − L̃ µQ µpol

0 −0.5 + 0.392941i − − −
0 1 1.071 −0.071 0.184 0.678

2 2.014 −0.014 0.026 0.030

1 0.954 0.046 −0.092 −0.064

1 2 2.006 −0.006 0.013 0.030

3 3.003 −0.003 0.007 0.005

2 1.987 0.013 −0.026 −0.028

2 3 3.000 0.000 0.000 0.005

4 4.001 −0.001 0.002 0.001

3 2.994 0.006 −0.011 −0.004

3 4 3.999 0.001 −0.001 −0.001

5 5.000 0.000 0.000 0.000
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Table 5. Parameters of Rydberg states of the OH radical in IBOA

limit

ω j J L L̃

1 1 1 0 −0.307

1 1.051

2 2.012

1 1 2 1 0.966

2 2.011

3 3.007

1 1 3 2 1.987

3 3.004

4 4.004

1 2 1 1 0.996

2 2.001

3 3.001

1 2 2 0 −0.082

1 1.016

2 2.003

3 3.001

4 4.001

1 2 3 1 0.990

2 2.002

3 3.001

4 4.001

5 5.000

2 2 1 1 0.984

2 2.005

3 3.003

2 2 2 0 −0.5 + 0.171i

1 1.056

2 2.011

3 3.004

4 4.002

2 2 3 1 0.959

2 2.008

3 3.005

4 4.003

5 5.002

conclusion follows for the states ω = j = J = 2, L = 0 in

the region of the inverse Born−Oppenheimer approxima-

tion. The performed calculations of rotational energies of

OH Rydberg states show their fundamental difference from

the spectra of the quantum rotator ∼ J(J + 1).
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and ERDF/ESF

”
Center of Advanced Applied Sciences“

(project CZ.02.1.01/0.0/0.0/16 019/0000778).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] Zvereva G.N. // Opt. Spectrosc. 2010. V. 108. N 6.

P. 915−922. doi 10.1134/S0030400X10060135

[2] Korbut A.N., Kelman V.A., Zhmenyak Yu.V., Klenovskii M.S. //

Opt. Spectrosc. 2014. V. 116. N 6. P 919−925.

doi 10.1134/S0030400X14040146

[3] Shuaibov A.K., Minya A.I., Gomoki Z.T., Gritsak R.V. //

Opt. Spectrosc. 2013. V. 114. N 2. P. 193−196.

doi 10.1134/S0030400X13020264

[4] Belovolova L.V. // Opt. Spectrosc. 2020. V. 128. N 7.

P 932−951. doi 10.21883/OS.2020.07.49565.64-20
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