Induced stress arising in crystalline silicon under exposure to ultra-short laser pulses of different duration in air and water
Smirnov N. A
1, Kudryashov S.I
1, Melnik N. N.
1, Papilova P.M.1, Sherstnev I.A.
1, Ionin A. A.
1, Chen J. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: cna1992@mail.ru, sikudr@sci.lebedev.ru, melnik@sci.lebedev.ru, sherstnevia@lebedev.ru, ioninaa@lebedev.ru, chenj@lebedev.ru
The silicon surface was modified in a single-pulse mode with femto-picosecond laser pulses (0.3 and 10 ps) in the near-IR range (1030 nm) during ablation in air and water. The resulting structures were studied using Raman microscopy. In the course of the study, it was found that nanocrystallites with a size of 7-8 nm appear at the crater boundary. Local mechanical stresses were found in the center of the crater, the sign of which depends on the applied energy density. The highest local compressive stresses arise in water in the subfilamentation mode at maximum energy densities. Keywords: silicon, Raman spectroscopy, ultrashort pulses, single-pulse ablation in air and liquid, local stresses.
- Chichkov B.N. et al. // Appl. Phys. A. 1996. V. 63. N 2. P. 109-115. doi 10.1007/BF01567637
- Neuenschwander B. et al. // Phys. Proc. 2014. V. 56. P. 1047-1058. doi 10.1016/j.phpro.2014.08.017
- Smirnov N.A. et al. // JETP Letters. 2018. V. 108. N 6. P. 368-373. doi 10.1134/S002136401818011X
- Smirnov N.A. et al. // Opt. and Quant. Electron. 2020. V. 52. N 2. P. 1-8. doi 10.1007/s11082-019-2169-1
- Sheremet E. et al. // Phys. Stat. Sol. (a). 2019. V. 216. N 19. P. 1900106
- Amer M.S., El-Ashry M.A., Dosser. L.R., Hix K.E., Maguire J.F., Irwin Bryan. // Appl. Surface Sci. 2005. V. 242. N 1-2. P. 162-167. doi 10.1016/j.apsusc.2004.08.029
- Ma L., Qiu W., Fan X. // Microelectronics Reliability. 2021. V. 118. P. 114045. doi 10.1016/j.microrel.2021.114045
- Wolf I.D. // J. Raman Spectrosc. 1999. V. 30. N 10. P. 877-883. doi 10.1002/(SICI)1097-4555(199910)30:10< 877::AID-JRS464>3.0.CO;2-5
- Kang Y. et al. // Optics and Lasers in Engineering. 2005. V. 43. N 8. P. 847-855. doi 10.1016/j.optlaseng.2004.09.005
- Xing Ma L. et al. // AIP Advances. 2019. V. 9. N 1. P. 015010
- Campbell I.H., Fauchet P.M. //Solid State Commun. 1986. V. 58. N 10. P. 739-741. doi 10.1016/0038-1098(86)90513-2
- Richter H., Wang Z.P., Ley L. // Solid State Commun. 1981. V. 39. N 5. P. 625-629. doi 10.1016/0038-1098(81)90337-9
- Periasamy S. et al. // Zeitschrift fur Physikalische Chemie. 2017. V. 231. N 9. P. 1585-1598. doi 10.1515/zpch-2016-0961
- Viera G., Huet S., Boufendi L. // J. Appl. Phys. 2001. V. 90. N 8. P. 4175-4183. doi 10.1063/1.1398601
- Bonse J., Brzezinka K.W., Meixner A.J. // Appl. Surface Sci. 2004. V. 221. N 1-4. P. 215-230. doi 10.1016/S0169-4332(03)00881-X
- Kiani A., Venkatakrishnan K., Tan B. // Optics Express. 2009. V. 17. N 19. P. 16518-16526. doi 10.1364/OE.17.016518
- De Wolf I. // Semiconductor Science and Technology. 1996. V. 11. N 2. P. 139
- Periasamy S. et al. // Zeitschrift fur Physikalische Chemie. 2017. V. 231. N 9. P. 1585-1598. doi 10.1515/zpch-2016-0961
- Smirnov N.A. et al. // Appl. Surface Sci. 2021. V. 562. P. 150243. doi 10.1016/j.apsusc.2021.150243
- Anisimov S.I. et al. // J. Physics: Conference Series. IOP Publishing. 2020. V. 1556. N 1. P. 012004. doi 10.1088/1742-6596/1556/1/012004
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.