Induced stress arising in crystalline silicon under exposure to ultra-short laser pulses of different duration in air and water
Smirnov N. A 1, Kudryashov S.I 1, Melnik N. N. 1, Papilova P.M.1, Sherstnev I.A. 1, Ionin A. A. 1, Chen J. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: cna1992@mail.ru, sikudr@sci.lebedev.ru, melnik@sci.lebedev.ru, sherstnevia@lebedev.ru, ioninaa@lebedev.ru, chenj@lebedev.ru

PDF
The silicon surface was modified in a single-pulse mode with femto-picosecond laser pulses (0.3 and 10 ps) in the near-IR range (1030 nm) during ablation in air and water. The resulting structures were studied using Raman microscopy. In the course of the study, it was found that nanocrystallites with a size of 7-8 nm appear at the crater boundary. Local mechanical stresses were found in the center of the crater, the sign of which depends on the applied energy density. The highest local compressive stresses arise in water in the subfilamentation mode at maximum energy densities. Keywords: silicon, Raman spectroscopy, ultrashort pulses, single-pulse ablation in air and liquid, local stresses.
  1. Chichkov B.N. et al. // Appl. Phys. A. 1996. V. 63. N 2. P. 109-115. doi 10.1007/BF01567637
  2. Neuenschwander B. et al. // Phys. Proc. 2014. V. 56. P. 1047-1058. doi 10.1016/j.phpro.2014.08.017
  3. Smirnov N.A. et al. // JETP Letters. 2018. V. 108. N 6. P. 368-373. doi 10.1134/S002136401818011X
  4. Smirnov N.A. et al. // Opt. and Quant. Electron. 2020. V. 52. N 2. P. 1-8. doi 10.1007/s11082-019-2169-1
  5. Sheremet E. et al. // Phys. Stat. Sol. (a). 2019. V. 216. N 19. P. 1900106
  6. Amer M.S., El-Ashry M.A., Dosser. L.R., Hix K.E., Maguire J.F., Irwin Bryan. // Appl. Surface Sci. 2005. V. 242. N 1-2. P. 162-167. doi 10.1016/j.apsusc.2004.08.029
  7. Ma L., Qiu W., Fan X. // Microelectronics Reliability. 2021. V. 118. P. 114045. doi 10.1016/j.microrel.2021.114045
  8. Wolf I.D. // J. Raman Spectrosc. 1999. V. 30. N 10. P. 877-883. doi 10.1002/(SICI)1097-4555(199910)30:10< 877::AID-JRS464>3.0.CO;2-5
  9. Kang Y. et al. // Optics and Lasers in Engineering. 2005. V. 43. N 8. P. 847-855. doi 10.1016/j.optlaseng.2004.09.005
  10. Xing Ma L. et al. // AIP Advances. 2019. V. 9. N 1. P. 015010
  11. Campbell I.H., Fauchet P.M. //Solid State Commun. 1986. V. 58. N 10. P. 739-741. doi 10.1016/0038-1098(86)90513-2
  12. Richter H., Wang Z.P., Ley L. // Solid State Commun. 1981. V. 39. N 5. P. 625-629. doi 10.1016/0038-1098(81)90337-9
  13. Periasamy S. et al. // Zeitschrift fur Physikalische Chemie. 2017. V. 231. N 9. P. 1585-1598. doi 10.1515/zpch-2016-0961
  14. Viera G., Huet S., Boufendi L. // J. Appl. Phys. 2001. V. 90. N 8. P. 4175-4183. doi 10.1063/1.1398601
  15. Bonse J., Brzezinka K.W., Meixner A.J. // Appl. Surface Sci. 2004. V. 221. N 1-4. P. 215-230. doi 10.1016/S0169-4332(03)00881-X
  16. Kiani A., Venkatakrishnan K., Tan B. // Optics Express. 2009. V. 17. N 19. P. 16518-16526. doi 10.1364/OE.17.016518
  17. De Wolf I. // Semiconductor Science and Technology. 1996. V. 11. N 2. P. 139
  18. Periasamy S. et al. // Zeitschrift fur Physikalische Chemie. 2017. V. 231. N 9. P. 1585-1598. doi 10.1515/zpch-2016-0961
  19. Smirnov N.A. et al. // Appl. Surface Sci. 2021. V. 562. P. 150243. doi 10.1016/j.apsusc.2021.150243
  20. Anisimov S.I. et al. // J. Physics: Conference Series. IOP Publishing. 2020. V. 1556. N 1. P. 012004. doi 10.1088/1742-6596/1556/1/012004

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru