Structure and properties of CoxMn1-xFe2O4 nanoparticles depending on the amount of Co ions (0≤ x≤ 1.0)
Kamzin A. S.1, Obaidat I. M.2, Semenov V. G.3, Narayanaswamy V.4, Al-Omari I. A.5, Issa B.6, Buryanenko I. V.7
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, United Arab Emirates University, Al-Ain, UAE
3St. Petersburg State University, St. Petersburg, Russia
4Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah, UAE
5Department of Physics, Sultan Qaboos University, Muscat, Sultanate of Oman
6Department of Physics, College of Sciences, University of Sharjah, Sharjah, UAE
7Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
The properties of magnetic nanoparticles (MNPs) of spinel ferrites CoxMn1-xFe2O4 (at x=0.0; 0.2; 0.3; 0.4; 0.5; 0.6; 0.8; 1.0) synthesized by chemical co-precipitation method have been studied. The studies of the synthesized CoxMn1-xFe2O4 MNPs were carried out using X-ray diffraction (XRD), Raman scattering and Mossbauer spectroscopy. The results of XRD, Raman and Mossbaur studies indicate that the obtained CoxMn1-xFe2O4 MNPs are single-phase. It was established from XRD measurements that the average size of CoxMn1-xFe2O4 crystallites is 34.86 nm for MnFe2O4 (x=0) and decreases to 14.99 nm for CoFe2O4 (x=1.0) with increasing Co ions concentration. An analysis of the Mossbaur spectra showed that the average crystallite size varies from 25 nm for MnFe2O4 (x=0) to 12 nm for CoFe2O4 (x=1.0). On the Raman spectra of CoxMn1-xFe2O4 MNPs, in the region of ~620 cm-1, splitting of the A1g line is observed, which means that the studied MNPs have a reverse spinel structure. The intensity ratio of the A1g (1) and A1g (2) peaks indicates a significant redistribution of the Co2+ and Fe3+ cations between tetra- and octahedralpositions in MNPs of the CoxMn1-xFe2O4 ferrite, which is confirmed by Mossbauer data. Mossbaur spectroscopy data indicate that the synthesized CoxMn1-xFe2O4 MNPs consist of large particles with magnetic ordering and small particles in the paramagnetic phase. With an increase in the concentration of Mn ions, the proportion of fine particles increases, which leads to a decrease in the magnetic blocking temperature. The saturation magnetization of MNPs at x=0.2 (Co0.2Mn0.8Fe2O4) is 57.41 emu/g and this sample, as was found in [V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomaterials 11, 1231 (2021)] has the highest specific absorption rate. As shown by Mossbauer studies, this is due to the fact that these particles are in a superparamagnetic state and the magnetic blocking temperature of these MNPs is in the region of ~315 K, which is most suitable for the treatment of malignant tumors by magnetic hyperthermia. Thus, the synthesized CoxMn1-xFe2O4 MNPs are promising for biomedical applications. Keywords: spinel ferrites CoxMn1-xFe2O4, magnetic structure, superparamagnetism, Mossbauer spectroscopy, materials for biomedicine.
  1. Handbook of Nanomaterials for Industrial Applications. Author Chaudhery Mustansar Hussain. Elsevier Inc., Amsterdam, Netherlands (2018). 709 c
  2. Z. Kai, J. Yanmin, X. Junjie, Y. Ziyu, G. Song, H. Yanglong. Acc. Chem. Res. 51, 404 (2018)
  3. S. Dey, S.K. Dey, K. Bagani, S. Majumder, A. Roychowdhury, S. Banerjee, V.R. Reddy, D. Das, S. Kumar. Appl. Phys. Lett. 105, 063110 (2014)
  4. B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M.S. Fernandez, A. Talone, G. Muscas, D. Peddis. Beilstein J. Nanotechnol. 10, 856 (2019)
  5. A. Kaur, G.K. Bhargava. Mater. Today: Proc. 37, 3082 (2021)
  6. Clinical Applications of Magnetic Nanoparticles / Ed. Nguyen T.K. Thanh. CRC Press. Taylor \& Francis Group. (2018). P. 495
  7. L. Peixoto, R. Magalhaes, D. Navas, S. Moraes, C. Redondo, R. Morales, J.P. Araujo, C.T. Sousa. Appl. Phys. Rev. 7, 011310 (2020)
  8. M.M. Cruz, L.P. Ferreira, b, J. Ramos, S.G. Mendo, A.F. Alves, M. Godinho, M.D. Carvalho. J. Alloys Comp. 703, 370 (2017)
  9. K. Islam, M. Haque, A. Kumar, A. Hoq, F. Hyder, S.M. Hoque. Nanomaterials 10, 2297 (2020)
  10. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomaterials 11, 1231 (2021)
  11. X. Wang, X. Kan, X. Liu, S. Feng, G. Zheng, Z. Cheng, W. Wang, Z. Chen, C. Liu. Mater. Today Commun. 25, 101414 (2020)
  12. E. Umut. J. Hittite. Sci. Eng. 6, 243 (2019)
  13. A.S. Kamzin, A.A. Valiullin, A. Bingolbali, N. Dogan. Physics of the Solid State 62, 1091 (2020)
  14. S.P. Yadav, S.S. Shinde, Pramod Bhatt, S.S. Meena, K.Y. Rajpure. J. Alloys Comp. 646, 550 (2015)
  15. K.M. Srinivasamurthy, V.J. Angadi, S.P. Kubrin, S. Matteppanavar, D.A. Sarychev, P. Mohan Kumar, H.W. Azale, B. Rudraswamy. Ceram. Int. 44, 9194 (2018)
  16. A. Lassoued, M.S. Lassoued, F. Karolak, S. Garcia-Granda, B. Dkhil, S. Ammar, A. Gadri. J. Mater Sci: Mater. Electron. 28, 18480 (2017)
  17. S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, B. Sahoo. J. Magn. Magn. Mater. 433, 29 (2017)
  18. A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria, V.G. Harris. Nanotechnology 20, 185704 (2009)
  19. C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernandez-Garci a, A. Guedes, P.B. Tavares, J-M. Greneche, J.P. Araujo, C. Freire. Chem. Mater. 24, 1496 (2012)
  20. F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis. J. Nanosci. Nanotechn. 19, 4888 (2019)
  21. T. Dippong, E.A. Levei, O.C. Goga, D. Toloman, G. Borodi. J. Thermal Anal. Calorimetry 136, 1587 (2019)
  22. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee. Ceram. Int. 46, 28035 (2020)
  23. S. Gandhi, S. Issar, A.K. Mahapatro, I. Roy. J. Mol. Liquids 310, 113194 (2020)
  24. G. Lavorato, M. Alzamora, C. Contreras, G. Burlandy, F.J. Litterst, E. Baggio-Saitovitch. Part. Syst. Charact. 1900061 (2019)
  25. C.R. Alves, R. Aquino, J. Depeyrot, F.A. Tourinho, E. Dubois, R. Perzynski. J. Mater. Sci. 42, 2297 (2007)
  26. R.M. Tripathi, S. Mahapatra, R. Raghunath, V.N. Sastry, T.M. Krishnamoorthy. Sci. Total. Environ. 250, 43 (2000)
  27. J.Z. Msomi, H.M.I. Abdallah, T. Moyo, A. Lancok. J. Magn. Magn. Mater. 323, 471 (2011)
  28. E. RanjithKumar, A.S. Kamzin, K. Janani. J. Magn. Magn. Mater. 417, 122 (2016)
  29. M.I.A.A. Maksoud, G.S. El-Sayyad, M.A. Elkodous, A.S. Awed. J. Mater. Sci.: Mater. Electron. 31, 9726 (2020)
  30. E. Zachanowicz, A. Ziecina, P.A. Miko ajczyk, K. Rogacki, M. Ma ecka, K. Marycz, M. Maredziak, B. Pozniak, M. Nowakowska, M. Tikhomirov, J. Miller, R.J. Wiglusz, R. Pazik. Eur. J. Inorg. Chem. 34, 5315 (2016)
  31. C.J. Prabagar, S. Anand, M. Asisi Janifer, S. Pauline. Mater. Today: Proc. 47, 2013 (2021)
  32. W.S. Sarifuddin, U.B. Purnama. J. Phys. Theor. App. 4, 36 (2020)
  33. M.S. Angotzi, V. Mameli, D. Zakutna, D. Kubaniova, C. Cara, C. Cannas. J. Phys. Chem. C 125, 20626 (2021)
  34. P. Vlazan, I. Miron, P. Sfirloaga. Ceram. Int. 41, 3760 (2015)
  35. S.F. Nasrin, U.Z. Chodhury, S.M. Hoque. J. Magn. Magn. Mater. 479, 126 (2019)
  36. R. Jabbar, S.H. Sabeeh, A.M. Hameed. J. Magn. Magn. Mater. 494, 165726 (2020)
  37. I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Princip. Magn. Hyperthermia. Magnetochemistry 5, 67 (2019)
  38. S.P. Yadev, S.S. Shinde, A.A. Kadam, K.Y. Rajpure. J. Semiconductor. 34, (2013)
  39. A. Maksoud, G. El-Sayyad, A. Ashour, A. El-Batal, M. Elsayed. J. Microbial Phatogenesys 127, 144 (2019)
  40. W.S. Sarifuddin, U.B. Purnama. AIP Conf. Proc. 2202, 020024-1 (2019).
  41. N.N. Greenwood, T.G. Gibb, Mossbauer Spectroscopy. Chapman and Hall Ltd., London (1971)
  42. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane, Bucharest (2013). V. 197
  43. A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Physics of the Solid State 62, 1919 (2020)
  44. A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. Physics of the Solid State 63, 807 (2021)
  45. A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. Physics of the Solid State 63, 900 (2021)
  46. V.G. Semenov, V.V. Panchuk. Mossbauer Spectra Processing Software MossFit. Private message
  47. C.V. Ramana, Y.D. Kolekar, K.K. Bharathi, B. Sinha, K. Ghosh. J. Appl. Phys. 114, 183907 (2013)
  48. H.S. Mund, B.L. Ahuja. Mater. Res. Bull. 85, 228 (2017)
  49. R.M. Freire, T.S. Ribeiro, I.F. Vasconcelos, J.C. Denardin, E.B. Barros, Giuseppe Mele, L. Carbone, S.E. Mazzetto, P.B.A. Fechine. J. Nanopart. Res. 15, 1616 (2013)
  50. H. Mansour, H. Letifi, R. Bargougui, S. De Almeida-Didry, B. Negulescu, C. Autret, A. Gadri, S. Ammar. Appl. Phys. A 123, 787 (2017)
  51. W. Wang, Zui Ding,1 Xiruo Zhao, Sizhu Wu, Feng Li, Ming Yue, J. Ping Liu. J. Appl. Phys. 117, 17A328 (2015); https://doi.org/10.1063/1.4917463
  52. G.R. Patta, V. Chitti Babu, V. Ravi Kumar, N. Veeraiah. J. Sol-Gel Sci. Technol. 100, 310 (2021)
  53. M. De Marco, X.W. Wang, R.L. Snyder, J. Simmens, S. Bayya, M. White, M.J. Naughton. J. Appl. Phys. 73, 6287 (1993)
  54. M. Atif, R. Sato Turtelli, R. Grossinger, M. Siddique, M. Nadeem. Ceram. Int. 40, 471 (2014)
  55. G. Datt, C. Kotabage, S. Datar, A.C. Abhyankar. Phys. Chem. Chem. Phys., 20, 26431 (2018)
  56. M.F. Etier, V.V. Shvartsman, F. Stromberg, J. Landers, H.W. Doru, C. Lupascu. Mater. Res. Soc. Symp. Proc. 1398, 1 (2012). DOI: 10.1557/opl.2012.699
  57. T. Tatarchuk, M. Liaskovska, V. Kotsyubynsky, M. Bououdina. Mol. Cryst. Liquid Cryst. 672, 54 (2018)
  58. H.M.I. Abdallah, T. Moyo, J.Z. Msomi. J. Phys: Conf Ser. 217, 012141 (2010). DOI: 10.1088/1742-6596/217/1/012141
  59. S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatt, S.M. Yusuf, D.L. Sastry. Ceram. Int. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09.081
  60. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. J. Appl. Phys. 39, 1204 (1968)
  61. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 747 (1969)
  62. S. M rup, M.F. Hansen, C. Frandsen. Comprehensive Nanosci. Technology 1, 437 (2011)
  63. S. M rup, E. Brok, C. Frandsen. J. Nanomaterials ID 720629 (2013)
  64. W. Baaziz, B.P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, S. Begin-Colin. J. Phys. Chem. C 118, 3795 (2014)
  65. I. Sharifi, H. Shokrollahi. J. Magn. Magn. Mater. 324, 2397 (2012)
  66. Y. Shi, J. Ding, H. Yin. J. Alloys Comp. 308, 290 (2000)
  67. S. Ayyappan, J. Philip, B. Raj. J. Phys. Chem. C 113, 590 (2009)
  68. Y. Kim, D. Kim, C.S. Lee. Physica B 337, 42, (2003)
  69. M. Liu, M. Lu, L. Wang, S. Xu, J. Zhao, H. Li. J. Mater. Sci. 51, 5487 (2016)
  70. W.J. Schuele, S. Shtrikman, D. Treves. J. Appl. Phys. 36, (Pt. 2), 1010 (1965)
  71. B.D. Kovacheva, T. Ruskov, P. Krystev, S. Asenov, N. Tanev, I. Monch, R. Koseva, U. Wolff, T. Gemming, M. Markova-Velichkova, D. Nihtianova, K.-F. Arndt. Bulgarian Chem. Comm. 44. Proc. of the 3-rd National Crystallographic Symposium (2012). P. 90--97.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru