Electrical and magnetic properties of intercalated compounds in the GdxNbSe2 system (0≤ x≤0.33)
Pleshchev V.G. 1
1Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
Email: v.g.pleshchev@urfu.ru

PDF
The electrical and magnetic properties were measured on polycrystalline samples of niobium diselenide intercalated with gadolinium atoms. The dependences of the electrical resistance on temperature point to a predominantly phonon scattering mechanism for charge carriers, while the concentration dependences are determined by increasing scattering by interstitial atoms. The magnetic properties of GdxNbSe2 (0≤ x≤0.33) were studied in the temperature range of 2-350 K and in the range of magnetic fields up to 70 kOe. Based on the results of studies of magnetic susceptibility and magnetization, the possibility of the existence of antiferromagnetic interactions in the studied compounds and the phenomenon of spin reorientation in a magnetic field are shown. The observed decrease in the effective magnetic moment of gadolinium ions with an increase with their concentration is discussed in terms of a possible intramolecular exchange. Keywords: niobium diselenide, gadolinium, intercalation, electrical resistance, magnetization, effective magnetic moment.
  1. L.A. Chernozatonsky, A.A. Artyukh. UFN 188, 1, 3 (2018). doi: 10.3367/UFNr.2017.02.038065 (in Russian)
  2. J.A. Wilson, F.J. Di Salvo, S. Mahajan. Adv. Physics 50, 8, 1171 (2001). doi: 10.1080/00018730110102718
  3. H.N.S. Lee, M. Garcia, H. Mc Kinzie, A. Wold. J. Solid State Chem. 1, 2, 190 (1970). doi: 10.1016/0022-4596(70)90013-7
  4. N.V. Toporova, V.I. Maksimov, V.G. Pleschov, A.N. Titov, N.V. Baranov. Phys. Met. Metallogr. 99, Suppl. 1, 50 (2005)
  5. T. Terashima, N. Kojima. J. Phys. Soc. Jpn. 63, 658 (1994). doi.org/10.1143/JPSJ.63.658
  6. S. Danzenbacher, S.L. Molodtsov, K. Koepernik, Y. Tomm, C. Laubschat. Mol. Cryst. Liq. Cryst. 341, 1, 45 (2000). doi: 10.1080/10587250008026115
  7. E.M. Sherokalova, V.G. Pleschov, N.V. Baranov, A.V. Korolev. Phys. Lett. A. 369, 3, 236 (2007). doi: 10.1016/j.physleta.2007.04.084
  8. F.R. Gamble. J. Solid State Chem. 9, 358 (1974). doi: 10.1016/0022596(74)90095-4
  9. J. Bartolome, E. Bartolome, V.V. Eremenko, V.V. Ibulaev, V.A. Sirenko, Y.T. Petrusenko. Low Temp. Phys. 34, 8, 642 (2008). doi: 10.1063/1.2967509
  10. L.M. Kulikov, V.I. Lazorenko, G.V. Lashkarev. Powder Metall. Met. Ceram. 41, 1-2, 107 (2002). doi: 10.1023/A:1016076918474
  11. V.G. Pleshchev, N.V. Selezneva. FTT 60, 2, 245 (2018). doi: 10.21883/FTT.2018.02.45375.219 (in Russian)
  12. N.V. Baranov, V.G. Pleshchev, A.N. Titov, V.I. Maksimov, N.V. Selezneva, E.M. Sherokalova. Nanotekhnika 3, 15 (2008) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru