Physics of the Solid State
Volumes and Issues
The change in the thermal conductivity of a multilayer array of carbon nanotubes during its lateral compression
Savin A. V.1,2
1N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
2Plekhanov Russian University of Economic, Moscow, Russia
Email: asavin@center.chph.ras.ru

PDF
Numerical simulation of thermal conductivity across a multilayer array of single-walled carbon nanotubes is carried out. The effect of transverse compression of the array on thermal conductivity has been studied. It is shown that the compression of the array can occur uniformly when all the nanotubes of the array are compressed equally, and it can occur inhomogeneously when a part of the nanotubes is strongly compressed, and the other part is weakly compressed. With homogeneous compression, the thermal conductivity of the array increases, but with inhomogeneous compression, it does not change and may even decrease in case of a large number of layers. This effect is especially pronounced for arrays of nanotubes of small diameter (D<2 nm). Keywords: carbon nanotubes, nanotube arrays, transverse compression, heat conductivity.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru