The change in the thermal conductivity of a multilayer array of carbon nanotubes during its lateral compression
Savin A. V.1,2
1N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
2Plekhanov Russian University of Economic, Moscow, Russia
Email: asavin@center.chph.ras.ru
Numerical simulation of thermal conductivity across a multilayer array of single-walled carbon nanotubes is carried out. The effect of transverse compression of the array on thermal conductivity has been studied. It is shown that the compression of the array can occur uniformly when all the nanotubes of the array are compressed equally, and it can occur inhomogeneously when a part of the nanotubes is strongly compressed, and the other part is weakly compressed. With homogeneous compression, the thermal conductivity of the array increases, but with inhomogeneous compression, it does not change and may even decrease in case of a large number of layers. This effect is especially pronounced for arrays of nanotubes of small diameter (D<2 nm). Keywords: carbon nanotubes, nanotube arrays, transverse compression, heat conductivity.
- L.V. Radushkevich, V.M. Lukyanovich. Russian Journal of Physical Chemistry 26, 1, 88-95 (1952)
- S. Iijima. Nature 354, 56 (1991)
- A.V. Eletsky. Physics-Uspekhi 172, 4, 401 (2002)
- D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu, R.S. Ruoff. Appl. Mech. Rev. 55, 495 (2002)
- J. Di, S. Fang, F.A. Moura, D.S. Galvao, J. Bykova, A. Aliev, M.J.d. Andrade, X. Lepro, N. Li, C. Haines, R. Ovalle-Robles, D. Qian, R.H. Baughman. Adv. Mater. 28, 6598 (2016)
- Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie, B. Shen, D. Cai, B. Liu, C. Zhang, Z. Jia, S. Zhang, X. Li, F. Wei. Nature Nanotechnology 13, 589 (2018)
- B.C. Liu, T.J. Lee, S.H. Lee, C.Y. Park, C.J. Lee. Chem. Phys. Lett. 377, 55 (2003)
- Y. Li, X. Zhang, X. Tao, J. Xu, W. Huang, J. Luo, Z. Luo, T. Li, F. Liu, Y. Bao, H.J. Geise. Carbon 43, 2, 295 (2005)
- E.G. Rakov. Uspekhi khimii 82, 1, 27 (2013) (in Russian)
- C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar. Nano Lett. 5, 9, 1842 (2005)
- E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai. Nano Lett. 6, 1, 96 (2006). l2Q. Li, C. Liu, X. Wang, S. Fan. Nanotechnology 20, 14, 145702 (2009)
- M.T. Pettes, L. Shi. Adv. Funct. Mater. 19, 24, 3918 (2009)
- B. Kumanek, D. Janas. J. Mater. Sci. 54, 10 7397 (2019)
- G. Zhang, B. Li. J. Chem. Phys. 123, 114714 (2005). l6J.R. Lukes, H. Zhong. J. Heat Transfer. 129, 6, 705 (2007)
- A.V. Savin, B. Hu, Y.S. Kivshar. Phys. Rev. B, 80, 195423 (2009)
- A.V. Savin, O.I. Savina. Physics of the Solid State 61, 2, 409 (2019)
- S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois, J. Vavro, C. Guthy, M. Chen, J.E. Fischer. J. Appl. Phys. 96, 12, 7509 (2004)
- A.E. Aliev, C. Guthy, M. Zhang, S. Fang, A.A. Zakhidov, J.E. Fischer, R.H. Baughman. Carbon 45, 15, 2880 (2007)
- A. Duzynska, A. Taube, K.P. Korona, J. Judek, M. Zdrojek. Appl. Phys. Lett. 106, 18, 183108 (2015)
- F. Lian, J.P. Llinas, Z. Li, D. Estrada, E. Pop. Appl. Phys. Lett. 108, 10, 103101 (2016)
- H. Zhan, Y.W. Chen, Q.Q. Shi, Y. Zhang, R.W. Mo, J.N. Wang. Carbon 186, 205 (2022)
- W.J. Evans, M. Shen, P. Keblinski. Appl. Phys. Lett. 100, 261908 (2012)
- M.R. Gharib-Zahedi, M. Tafazzoli, M.C. Bohm, M. Alaghemandi. J. Chem. Phys. 139, 184704 (2013)
- J. Wang, D. Chen, J. Wallace, J. Gigax, X. Wang, L. Shao. Appl. Phys. Lett. 104, 191902 (2014)
- N.S. Chopra, L.X. Benedict, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl. Nature 377, 14, 135 (1995)
- G. Gao, T. Cagin, W.A. Goddard III. Nanotechnology 9, 184 (1998)
- J. Xiao, B. Liu, Y. Huang, J. Zuo, K.-C. Hwang, M.-F. Yu. Nanotechnology 18, 395703 (2007)
- T. Chang. Phys. Rev. Lett. 101, 175501 (2008)
- J.A. Baimova, Q. Fan,1 L. Zeng, Z. Wang, S.V. Dmitriev, X. Feng, K. Zhou. J. Nanomater. 2015, 186231 (2015)
- A. Impellizzeri, P. Briddon, C.P. Ewels, Phys. Rev. B 100, 115410 (2019)
- M.M. Maslov, K.S. Grishakov, M.A. Gimaldinova, K.P. Katin. Fuller. Nanotub. Car. Nanostructures 28, 97 (2020)
- A.Y. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Science 310, 1307 (2005)
- L.K. Rysaeva, E.A. Korznikova, R.T. Murzaev, D.U. Abdullina, A.A. Kudreyko, J.A. Baimova, D.S. Lisovenko, S.V. Dmitriev. Facta Univ. Ser. Mech. Eng. 18, 1 (2020)
- A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 92, 035412, (2015)
- E.A. Korznikova, L.K. Rysaeva, A.V. Savin, E.G. Soboleva, E.G. Ekomasov, M.A. Ilgamov, S.V. Dmitriev. Materials 12, 3951 (2019)
- A. Savin, E. Korznikova, S. Dmitriev, E. Soboleva, Comp. Mater. Sci. 135, 99 (2017)
- A.V. Savin, O.I. Savina. Physics of the Solid State 61, 11, 2257 (2019)
- A.V. Savin, O.I. Savina. Physics of the Solid State 63, 1, 137 (2021)
- A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Physics of the Solid State 57, 11, 2278 (2015)
- A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 99, 235411 (2019).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.