Non-Heisenberg ferrimagnet with single-ion anisotropy
Kosmachev O. A.1, Yarygina E .A.1, Matyunina Ya. Yu.1, Friedman Yu. A.1
1Vernadskii Crimean Federal University, Simferopol, Russia
Email: yuriifridman@gmail.com

PDF
We have investigated the effect of single-ion anisotropy of the "easy plane" type on the phase states of a ferrimagnet with S=1 and sigma=1/2 sublattices and non-Heisenberg (bilinear and biquadratic in spins) exchange interaction for the sublattice with S=1. It is shown that taking into account both the non-Heisenberg exchange interaction and the single-ion anisotropy of the sublattice with S=1 leads to the realization of a phase with vector order parameters (ferrimagnetic phase) and a phase characterized by both vector and tensor order parameters (quadrupole-ferrimagnetic). It is shown that taking into account single-ion anisotropy changes the type of phase transition in comparison with an isotropic non-Heisenberg ferrimagnet. A phase diagram is constructed, and the condition for the compensation of the sublattice spins is determined. Keywords: ferrimagnet, biquadratic exchange interaction, single-ion anisotropy "easy plane", quadrupole-ferrimagnetic phase, phase transition.
  1. H.V. Gomonay V.M. Loktev. Low. Temp. Phys. 40, 17 (2014). https://doi.org/10.1063/1.4862467
  2. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005
  3. M.B. Jungfleisch, W. Zhang, A. Hoffmann. Phys. Lett. A 382, 865 (2018). https://doi.org/10.1016/j.physleta.2018.01.008
  4. H.V. Gomonay, V.M. Loktev. Phys. Rev. B 81, 144427 (2010). https://doi.org/10.1103/PhysRevB.81.144427
  5. O.A. Tretiakov, D. Clarke, G.-W. Chern, Y.B. Bazaliy, O. Tchernyshyov, Phys. Rev. Lett. 100, 127204 (2008). https://doi.org/10.1103/PhysRevLett.100.127204
  6. E.G. Galkina, B.A. Ivanov, S. Savel'ev, F. Nori. Phys. Rev. B 77, 134425 (2008). https://doi.org/10.1103/PhysRevB.77.134425
  7. O. Gomonay, T. Jungwirth, J. Sinova, Phys. Rev. Lett. 117, 017202 (2016). https://doi.org/10.1103/PhysRevLett.117.017202
  8. E.G. Galkina, B.A. Ivanov. Low Temp. Phys. 44, 618 (2018). https://doi.org/10.1063/1.5041427
  9. R. Cheng, D. Xiao, A. Brataas. Phys. Rev. Lett. 116, 207603 (2016). https://doi.org/10.1103/PhysRevLett.116.207603
  10. R. Khymyn, I. Lisenkov, V. Tyberkevych, B.A. Ivanov, A. Slavin. Sci. Rep. 7, 43705 (2017). https://doi.org/10.1038/srep43705
  11. O.R. Sulymenko, O.V. Prokopenko, V.S. Tiberkevich, A.N. Slavin, B.A. Ivanov, R. Khymyn. Phys. Rev. Appl. 8, 064007 (2017). https://doi.org/10.1103/PhysRevApplied.8.064007
  12. B.A. Ivanov, A.L. Sukstanski. JETP 84, 370 (1983)
  13. K.-J. Kim, S.K. Kim, Y. Hirata, Se-Hyeok Oh, T. Tono, D.-H. Kim, T. Okuno, W.S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K.-J. Lee, T. Ono. Nature Mater. 16, 1187 (2017). https://doi.org/10.1038/nmat4990
  14. E.G. Galkina, C.E. Zaspel, B.A. Ivanov, N.E. Kulagin, L.M. Lerman. JETP Lett. 110, 474 (2019). https://doi.org/10.1134/S0370274X1919007X
  15. S.K. Kim, Y. Tserkovnyak. Appl. Phys. Lett. 111, 032401 (2017). https://doi.org/10.1063/1.4985577
  16. C.E. Zaspel, E.G. Galkina, B.A. Ivanov. Phys. Rev. Appl. 12, 044019 (2019). https://doi.org/10.1103/PhysRevApplied.12.044019
  17. I. Lisenkov, R. Khymyn, J. Angstrem kerman, N.X. Sun, B.A. Ivanov. Phys. Rev. B 100, 100409(R) (2019). https://doi.org/10.1103/PhysRevB.100.100409
  18. B.A. Ivanov. Low Temp. Phys. 45, 935 (2019). https://doi.org/10.1063/1.5121265
  19. I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H.A. Durr, T.A. Ostler, J. Barker, R.F.L. Evans, R.W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, A.V. Kime. Nature London 472, 205 (2011). https://doi.org/10.1038/nature09901
  20. T.A. Ostler, J. Barker, R.F.L. Evans, R. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L.J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D.V. Afanasiev, B.A. Ivanov, A.M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, Th. Rasing, A.V. Kimel. Nature Commun. 3, 666 (2012). https://doi.org/10.1038/ncomms1666
  21. J.H. Mentink, J. Hellsvik, D.V. Afanasiev, B.A. Ivanov, A. Kirilyuk, A.V. Kimel, O. Eriksson, M.I. Katsnelson, Th. Rasing. Phys. Rev. Lett. 108, 057202 (2012). https://doi.org/10.1103/PhysRevLett.108.057202
  22. V.G. Bar'yakhtar, V.I. Butrim, B.A. Ivanov. JETP Lett. 98, 289 (2013). https://doi.org/10.1134/S0021364013180057
  23. Yu.A. Fridman, O.A. Kosmachev. Phys. Solid State 51, 6, 1167 (2009). DOI: 10.1134/S1063783409060146
  24. E.L. Nagaev. Sov. Phys. Usp. 25, 31 (1982)
  25. V.M. Loktev, V.S. Ostrovskii. Low Temp. Phys. 20, 775 (1994)
  26. T. Moriya. Phys. Rev. 117, 635 (1960)
  27. Yu.N. Mitsay, Yu.A. Fridman, D.V. Spirin, M.S. Kochmanski. Acta Phys. Pol. 97, 355 (2000). https://doi.org/10.12693/APhysPolA.97.355
  28. Yu.A. Fridman, O.A. Kosmachev. JMMM. 236, 272 (2001). https://doi.org/10.1016/S0304-8853(01)00464-4
  29. E.G. Galkina, V.I. Butrim, Yu.A. Fridman, B.A. Ivanov, Franco Nori. Phys. Rev. B 88, 144420 (2013). https://doi.org/10.1103/PhysRevB.88.144420
  30. E.G. Galkina, B.A. Ivanov, V.I. Butrim. Low Temp. Phys. 40, 635 (2014). https://doi.org/10.1063/1.4890989
  31. A.F. Andreev, I.A. Grishchuk. Sov. Phys. JETP 60, 267 (1984)
  32. E.L. Nagaev. Magnets with Complex Exchange Interactions. Nauka, Moscow (1988)
  33. B.A. Ivanov, A.K. Kolezhuk. Phys. Rev. B 68, 052401 (2003). https://doi.org/10.1103/PhysRevB.68.052401
  34. V.G. Bar'yakhtar, V.I. Butrim, A.K. Kolezhuk, B.A. Ivanov. Phys. Rev. B 87, 224407 (2013). DOI: 10.1103/PhysRevB.87.224407
  35. E.G. Galkina, B.A. Ivanov, O.A. Kosmachev, Yu.A. Fridman. Low Temp. Phys. 41, 382 (2015). http://dx.doi.org/10.1063/1.4921470
  36. Yu.A. Fridman, O.A. Kosmachev, Ph.N. Klevets. JMMM 325, 125 (2013). http://dx.doi.org/10.1016/j.jmmm.2012.08.027
  37. A. Lauchli, G. Schmid, S. Trebst. Phys. Rev. B 74, 144426 (2006). https://doi.org/10.1103/PhysRevB.74.144426
  38. A.V. Krivtsova, Ya.Yu. Matyunina, E.A. Polyanskaya, O.A. Kosmachev, Yu.A. Fridman. JMMM 513, 167178 (2020). https://doi.org/10.1016/j.jmmm.2020.167178
  39. A.V. Krivtsova, Ya.Yu. Matyunina, Yu.A. Fridman. JETP 131, 302 (2020). DOI: 10.1134/S1063776120060059
  40. N. Papanikolaou. Nucl. Phys. B 305, 367 (1988)
  41. A. V. Chubukov. J. Phys. Condens. Matter 2, 1593 (1990)
  42. K. Stevens. Proc. Phys. Soc. A 65, 209 (1952)
  43. R.O. Zaitsev. Sov. Phys. JETP 41, 1, 100 (1975)
  44. V.V. Val'kov. Sov. J. Theor. Meth. Phys. 76, 766 (1988)
  45. Yu.A. Fridman, O.A. Kosmachev, Ph.N. Klevets. JMMM 320, 435 (2008). doi: 10.1016/j.jmmm.2007.07.001
  46. Yu.N. Mitsai, Yu.A. Fridman. TMF 81, 263 (1989).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru