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We have investigated the effect of single-ion anisotropy of the
”
easy plane“ type on the phase states of a

ferrimagnet with S = 1 and σ = 1/2 sublattices and non-Heisenberg (bilinear and biquadratic in spins) exchange

interaction for the sublattice with S = 1. It is shown that taking into account both the non-Heisenberg exchange

interaction and the single-ion anisotropy of the sublattice with S = 1 leads to the realization of a phase with vector

order parameters (ferrimagnetic phase) and a phase characterized by both vector and tensor order parameters

(quadrupole-ferrimagnetic). It is shown that taking into account single-ion anisotropy changes the type of phase

transition in comparison with an isotropic non-Heisenberg ferrimagnet. A phase diagram is constructed, and the

condition for the compensation of the sublattice spins is determined.
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1. Introduction

In recent years, a new and actively developing field of

the physics of magnetism has arisen — the spintronics,

in which compensated magnets are actively studied and

applied (see [1–3]). This interest is due to the fact

that for them the dynamic parameters, such as magnetic

resonance frequencies, domain wall velocities, and the

number of others, are exchange enhanced. In the work [4]
it was shown that the spin current actively influences

magnetically ordered systems with zero integral magnetic

moment, which makes it possible to use antiferromagnetics

in spintronics. This circumstance, in principle, makes it

possible to increase the speed of the systems for writing and

reading information [5–8], and significantly (up to values of

the order of THz) to increase the operating frequency of

oscillators pumped by spin current [9–11]. However, despite
all the attractiveness of antiferromagnetics, they have a high

sensitivity of the magnetic order to the presence of defects

that violate the sublattice structure of the crystalline sample,

which makes it difficult to use them in nanosystems. On the

other hand, for ferrimagnetics such as GdFeCo, amorphous

alloys of rare-earth elements with elements of the iron

group, standard nanotechnologies can be used, the same

as for classical materials of nanomagnetism, iron, nickel or

permalloy. It is well known that the effects of exchange

amplification of dynamic parameters, similar to those known

for antiferromagnetics, occur for ferrimagnetics located

in the vicinity of the sublattice compensation point [12].
Thus, it becomes possible to use ferrimagnetics located

near the compensation point for various ultrafast spintronic

devices. In recent papers, ultrafast (with velocities of

the order of km/s) dynamics of domain walls [13,14] and

high-frequency dynamics of ferrimagnetic vortices [15,16]
have been studied experimentally and theoretically. The

scheme of a magnetic nano-generator based on ferrimag-

netics pumped by spin current, operating in the THz

range [17], is proposed. These circumstances make a

detailed study of various aspects of the spin dynamics of

ferrimagnetics practically important and topical (see the

recent review [18]). In addition, for ferrimagnetics (namely,

an alloy of rare-earth and transition metals GdFeCo), an

ultrafast (over a time of the around few ps) flip of the

sublattice magnetizations under the action of a laser pulse

with a duration of less than 100 fs [19,20]. It turned out

that this effect is directly related to the presence of two sub-

lattices, and an essential role in the formation of the effect

is played by the change in the modules of the magnetic

moments of the sublattices due to the exchange interaction,

such that their sum remains constant [21,22]. Thus, the

purely longitudinal evolution of the magnetic moments of

sublattices is essential for describing the effect.

It should be noted that a number of problems in

the physics of ferrimagnetics have been relatively poorly

studied. In particular, the reorientation effect noted above

was observed for a ferrimagnetic containing both weakly

anisotropic ions and rare-earth ions with a considerable

single-ion anisotropy. The presence of considerable single-

ion anisotropy leads to essentially quantum effects that are

not described by the standard phenomenological theory [23].
Complete description of such effects requires taking into ac-

count the dynamics of tensor variables, which are quantum

averages of operators bilinear in spin components, which

goes beyond the Landau−Lifshitz equation [24,25]. The ef-

fect of quantum spin reduction is characteristic of magnetics

with single-ion anisotropy of the
”
easy plane“type [26–30].
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It can be assumed that the spin reduction effect can be

proposed to describe the ultrafast longitudinal
”
switching“

of spins [29–30].
It should be emphasized that the effect of quantum

spin reduction is realized not only in strongly anisotropic

magnetics, but also in the so-called non-Heisenberg mag-

netics. By the term
”
non-Heisenberg magnetics“ we

mean magnetically ordered systems in which higher spin

invariants of the form (S1, S2)
n with values n up to 2S,

where S is the value of the magnetic ion spin, play

an important role both in the formation of static and

dynamic properties [31–34]. Thus, the Hamiltonian for

the isotropic exchange interaction of a magnetic with S = 1

contains both the bilinear (S1, S2) and the biquadratic term

(S1, S2)
2 [25,31,32–37]. In recent works on the dynamic

and static properties of isotropic and exchange-anisotropic

non-Heisenberg ferrimagnetics with sublattices S = 1 and

σ = 1/2 and taking into account the biquadratic exchange

interaction in the sublattice with spin 1 [38,39], it was shown

that in such systems, depending on the ratio of material

parameters, it is possible to realize both a ferrimagnetic

phase characterized by dipole order parameters and a phase

whose state is described by both dipole and tensor order

parameters (quadrupole-ferrimagnetic). Moreover, in this

”
mixed“ state, compensation of the magnetic moments of

the sublattices is possible, i.e. compensation line exists.

Thus, the question of the properties of non-Heisenberg

ferrimagnetic currents, taking into account the influence of

single-ion anisotropy of the type
”
easy plane“ is not only of

academic interest, but also of great practical importance.

2. Model

As a system under study, we consider the two-sublattice

anisotropic magnetic with the spin of the magnetic ion

of the first sublattice S = 1 and the second — σ = 1/2,

and non-Heisenberg exchange interaction for the sublattice

with S = 1. In this case, in the first sublattice, both

bilinear exchange and biquadratic exchange interactions are

taken into account, as well as single-ion anisotropy of the

”
easy plane“type. The Hamiltonian of such system can be

represented in the form:

H = − 1

2

∑

n,n′

[

J(2)(n − n′)(Sn, Sn′) + K(n − n′)(Sn, Sn′)
2

]

− 1

2

∑

m,m′

J(1)(m − m′)(σmσm′)

− 1

2

∑

n,m

A(n − m)(σmSn) +
β

2

∑

n

(Sx
n)

2, (1)

where J(1) > 0 is the exchange interaction constant for a

sublattice with spin σ = 1/2; J(2) > 0, K > 0 are bilinear

and biquadratic exchange interaction constants for S = 1;

A < 0 is the inter-sublattice interaction constant, β > 0 is

the single-ion anisotropy constant of
”
easy plane“ type

(basic plane ZOY ). Further consideration will be carried

out for the case of low temperatures (T ≪ TN, TN — Neel

temperature).
The change in phase states is associated with a change

in the value of material parameters (and their relationship

between them) [24,32,36,38–41]. Variation of system

parameters can occur, for example, by changing the concen-

tration of magnetic ions, or by applying external mechanical

stresses, leading to deformation of the crystal lattice. In the

context of this work, it is not important how the material

constants change in the model under consideration.

Let us choose the OZ axis as the quantization axis. Then,

the average value of the spin for the first sublattice will be

parallel to this axis, and the second sublattice — antiparallel

to this axis. This orientation for the magnetic moments of

the sublattices is due to the fact that the constant of the inter-

sublattice exchange interaction is A < 0, which determines

the antiparallel orientation of the magnetic moments of the

sublattices. For the convenience of calculations, we turn the

second sublattice so that the directions of the quantization

axes of both sublattices coincide. The unitary rotation

of U(ϕ) =
∏

l
exp(iϕσ x

l ) by the angle ϕ = π leads to the

following transformations of the components of the second

spin operator sub-lattice

σ x
m → σ x

m, σ y
m → −σ y

m, σ z
m → −σ z

m.

It should be noted that such transformations preserve the

standard commutation relations for the components of the

spin operators.

Further calculations will be carried out using the Stevens

operators [42], since the average values of these operators

implement the full set of dynamic system variables.

Then, the Hamiltonian of the system under study takes

the form

H = −1

2

∑

m,m′

J(1)(m − m′)(σ x
mσ

x
m′ + σ y

mσ
y
m′ + σ z

mσ
z
m′)

− 1

2

∑

n,n′

[

J(2)(n − n′) − K(n − n′)

2

]

(Sx
nSx

n′ +Sy
nSy

n′ +Sz
nSz

n′)

− 1

4

∑

n,n′

K(n − n′)

(

1

3
O0

2nO0
2n′ + O1

2nO1
2n′ + Õ1

2nÕ1
2n′

+ O2
2nO2

2n′ + Õ2
2nÕ2

2n′

)

− 1

2

∑

m,n

A(m − n)(σ x
mSx

n − σ y
mSy

n

− σ z
mSz

n) +
β

12

∑

n

O2
2n +

β

8

∑

n

(S+
n S−

n + S−

n S+
n ), (2)

where S± = Sx ± iSy ; O0
2 = 3(Sz )2 − S(S + 1); O1

2=
= 1

2

[

Sz , (S+ + S−)
]

+
; Õ1

2 = 1
2i

[

Sz , (S+ − S−)
]

+
Õ2

2 = 1
2i

×
[

(S+)2 − (S−)2
]

— Stevens operators.

Separating out in Hamiltonian (2) the average fields

associated with both the dipole order parameters 〈Sz 〉 and
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the quadrupole ones (qt
2 = 〈Ot

2〉), we obtain the one-node

Hamiltonian

H0 = Hσ σ
z
n + HSSz

n − B0
2O

0
2n − B2

2O
2
2n

+
β

8
(S+S− + S−S+) + 1, (3)

where

HS =
(

J(2)
0 − K0/2

)

〈Sz 〉 − 1

2
A0〈σ z 〉,

Hσ = J(1)
0 〈σ z 〉 − 1

2
A0〈Sz 〉, (4)

B0
2 =

K0

6
q0
2, B2

2 =
K0

2
q2
2 −

β

12
,

1 =
1

2
J(1)
0 〈σ z 〉2 +

1

2

(

J(2)
0 − K0

2

)

〈Sz 〉2

+
K0

4

(

(q0
2)

2

3
+ (q2

2)
2

)

− 1

2
A0〈Sz 〉〈σ z 〉.

Here, J(1)
0 , J(2)

0 , K0 and A0 are zero Fourier components of

the corresponding exchange integrals.

Both single-ion anisotropy and biquadratic exchange

interactions can be correctly taken into account using

the diagram technique for Hubbard operators [43–46].
These operators are built on the basis of the eigen-

functions of the operators Sz (|M〉), M = −1, 0, 1 and

σ z (|m〉), m = −1/2, 1/2 for the first XM′M = |M ′〉〈M| and
the second Y m′m = |m′〉〈m| sublattices, respectively, and

describe the transition of a magnetic ion from the M ′ state

to the M state and from the m′ state to the m state. The

relation between the spin and Stevens operators and the

Hubbard operators has the form

Sz = X1 1 − X−1−1, O2
2 = X1−1 + X−1 1,

O0
2 = X1 1 − 2X0 0 + X−1−1,

σ z =
1

2

(

Y
1
2

1
2 − Y−

1
2
−

1
2

)

, σ+ = Y
1
2
−

1
2 , σ− = (σ+)+.

Then, in terms of the Hubbard operators, the one-node

Hamiltonian (3) can be represented in the form

H0 = − 1

2
Hσ

(

Y
1
2

1
2 − Y−

1
2
−

1
2

)

− HS(X
1 1 − X−1−1)

− B2
2(X

1−1 + X−1 1) − B0
2(X

1 1 − 2X0 0 + X−1−1)

+
β

4
(X1 1 + 2X0 0 + X−1−1) + 1. (5)

As you can see, the Hamiltonian (5) is off-diagonal, and to

diagonalize it we use the unitary transformation [44]:

H̃0 = U(α)H0U
+(α),

whose explicit form is: U(α) = 1 + (cosα − 1)
× (X1 1 + X−1−1) + sinα(X1−1 − X−1 1).

As a result, we obtain the Hamiltonian (5) in the diagonal

form

H̃0=E1X1 1 + E0X0 0 + E−1X
−1−1 + ε 1

2
Y

1
2

1
2 + ε

−
1
2
Y−

1
2
−

1
2 ,

(6)

where

E1 = −B0
2 −

β

4
− HS cos 2α − B2

2 sin 2α + 1,

E0 = −2B0
2 +

β

2
+ 1,

E−1 = −B0
2 −

β

4
+ HS cos 2α + B2

2 sin 2α + 1,

ε 1
2
,− 1

2
= ∓Hσ 〈σ z 〉, (7)

energy levels of magnetic ions of the first and second

sublattices, respectively.

The wave functions of the sublattices have the form

9(1) = cosα|1〉 + sinα|− 1〉; 9(0) = |0〉

and

9(−1) = − sinα|1〉 + cosα|− 1〉,

8

(

1

2

)

=

∣

∣

∣

∣

1

2

〉

and

∣

∣

∣

∣

−1

2

〉

. (8)

The relationship of spin operators with Hubbard opera-

tors constructed on the basis of the eigenfunctions of the

Hamiltonian (8) now has the form

Sz
n = cos 2α(X1 1

n − X−1−1
n ) − sin 2α(X1−1

n + X−1 1
n );

S+
n =

√
2

[

sinα(X0 1
n − X−1 0

n ) + cosα(X0−1
n + X1 0

n )
]

,

S−

n = (S+
n )+,

where, α is the unitary u−v transformation parameter

defined by the relation

HS sin 2α = −B2
2 cos 2α.

From the relationship between spin operators and Hub-

bard operators, we can determine the order parameters of

the first sublattice as a function α:

〈Sz 〉 = cos 2α, q2
2 = 〈O2

2〉 = sin 2α, q0
2 = 〈O2

0〉 = 1.

The second sub lattice is described only by the dipole

parameter in the order 〈σ z 〉 and plays the role of the
”
bias“

field.
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3. Free energy analysis

Since we consider the system at low temperatures, the

free energy density practically coincides with the energy

levels of the magnetic ion of the ground state. As

follows from relations (7), the lowest levels of the first and

second sublattices are the levels E1 and ε 1
2
, respectively.

Consequently, the free energy density of the considered

ferrimagnetic can be represented in the form

F = E1 + ε 1
2
,

Taking into account relations (4) and (7), for the free energy
density we obtain

F = − 1

12
K0 −

1

4
β − 1

2
J(1)
0 〈σ z 〉2 − 1

2

[

J(2)
0 − K0

]

〈Sz 〉2

+
1

2
A0〈σ z 〉〈Sz 〉 +

1

12
β sin 2α.

Considering that 〈σ z 〉 = 1/2, 〈Sz 〉 = cos 2α, and also that

the inter-sublattice interaction constant A < 0, we get the

following expression:

F = − 1

4

[

β +
4

3
K0 +

1

2
J(1)
0

]

− 1

4
|A0| cos 2α

+
1

12
β sin 2α − 1

2

[

J(2)
0 − K(0)

]

cos2 2α. (9)

An analysis of the free energy density (9) makes it possible

to determine the transformation parameter αu−v for various

ratios of the material parameters of the system.

In the general case, the equation for the parameter α has

the form

|A0|
2

sin 2α +
β

6
cos 2α + 2(J(2)

0 − K0) cos 2α sin 2α = 0.

(10)

As follows from equation (10), the magnetization of the

sublattice with S = 1 essentially depends on the ratio of

material parameters, and the magnetization of the sublattice

with spin 1/2 remains constant and plays the role of

the
”
bias“ field. It should be noted that the condition

〈σ z 〉 = 1/2 arises naturally from the connection of the

z -th component of the operator σ with the Hubbard

operators Y m′m and is exact in our case T = 0.

Let us consider in more detail the solutions of equa-

tion (10) at various ratios of material parameters and low

temperatures.

Thus, if the single-ion anisotropy constant is much smaller

than the bilinear and biquadratic exchange interactions, and

the bilinear exchange, in turn, exceeds the biquadratic

one (J0 > K0 ≫ β), then with such a ratio of material

parameters, the solution of the equation (10) can be

represented in the form

sin 2α = − β/3

4(J(2)
0 − K0) + |A0|

.

Since we assume that the single-ion anisotropy constant is

the smallest parameter of the system, and J0 > K0, then

sin 2α ∼ 0, and hence cos 2α ∼ 1, i.e., the magnetization of

the first sublattice practically reaches its maximum possible

value 〈Sz 〉 ≈ 1, thus the state of the system is close to

ferrimagnetic. This means that ferrimagnetic ordering (FiM)
occurs in the system with sublattice state vectors

|9(1)〉 = |1〉 and

∣

∣

∣

∣

8

(

1

2

) 〉

=

∣

∣

∣

∣

1

2

〉

,

and order parameters

|〈σ z 〉| =
1

2
, 〈Sz 〉 = cos 2α ≈ 1, q0

2 = 1, q2
2 ≈ 0.

As can be seen, in this state the first and second sublattices

are close to saturation, but the magnetization vectors of the

sublattices are anti-collinear. It should be noted that the

sublattice S = 1 reaches saturation asymptotically, i.e., at

sufficiently large values of the bilinear exchange interaction

constant.

Let us now consider the opposite case, when the

predominant parameter of the first sublattice is the bi-

quadratic exchange interaction. In this case, the solution

of equation (10) has the form

cos 2α =
|A0|

4
(

K0 − J(2)
0

)

+ β/3
. (11)

Since cos 2α determines the average magnetic moment

(at the node) of the first sublattice, this value must be

positive, i.e.,
|A0|

4
(

K0 − J(2)
0

)

+ β/3
> 0.

Also, the cos 2α function is limited. Thus, at

K(0) > β > J(0), the state is realized in the system with

the magnetization of the first sublattice significantly less than

the maximum possible, and the second sublattice retains the

saturated value of the magnetization (|〈σ z 〉| = 1/2). The

quadrupole order parameters of the first sublattice in this

case have the form

q2
2 = 〈O2

2〉 = sin 2α < 1, q0
2 = 〈O0

2〉 = 1.

Thus, the system realizes the phase in which both the

vector order parameter of the first sublattice (〈Sz 〉) and

the components of the quadrupole moment tensor (q2
2) of

the first sublattice take intermediate values between zero

and one, and the second sublattice plays the role of a

constant
”
bias field“. Thus, at large values of the biquadratic

exchange interaction constant and a significant single-ion

anisotropy, the effect of quantum spin reduction appears

in the first sublattice [23,29,34]. We will call such the state

as the quadrupole-ferrimagnetic state (QFiM).
The ground state vectors of the sublattices in the

QFiM phase have the form

|9(1)〉 = cosα|1〉 + sinα| − 1〉,
∣

∣

∣

∣

8

(

1

2

) 〉

=

∣

∣

∣

∣

1

2

〉

.
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The magnetization vectors of the first and second sublattices

are anti-collinear, and, consequently, in this phase, taking

into account the quantum spin reduction of the first

sublattice [23,29,34], sublattice spins can be compensated.

From the condition 〈Sz 〉 = −〈σ z 〉, and taking into account

that 〈σ z 〉 = 1/2, we obtain

|A0|
4
(

K0 − J(2)
0

)

+ β/3
= −1/2.

The solution to this equation has the form

|A(0)| = −2
(

K0 − J(2)
0

)

− β/6. (12)

Thus, equation (12) describes a surface in vari-

ables (J, K, A, β) on which the total average spin of

sublattices is equal to zero (〈Sz + σ z 〉 = 0). It should

be emphasized that in this case we are talking about the

compensation of the sublattice spins, and not about the

compensation of the magnetic moments of the sublattices.

The point is that the magnetic moment is related to the

spin moment of the sublattices as M = −gµBS, where Land’

g-factor (g-factor). Since in our model the sublattices are

not equivalent, it is logical to assume that the g-factors
of the sublattices are not equal, and, consequently, the

magnetic moments of the sublattices on the compensation

plane are also not equal [18]. Thus, although the spin

moments compensate each other for the ratios of material

parameters that we have determined, the integral magnetic

moment in this case may not be equal to zero and reach

a sufficiently large value, greater, for example, than for

weak ferromagnets (AFM with the Dzyaloshinskii−Moriya

interaction). Moreover, this resulting magnetic moment is

parallel to the anti-ferromagnetism vector, and the dynamics

of a ferrimagnetic at the compensation point can be

considered as
”
antiferromagnetic“ [18].

Equation (12) is more convenient to rewrite in the

reduced variables y = |A|/K, x = J/K, y = β/K. Then

y = 2x − 2− z/6. (13)

It should be noted that in the absence of inter-

sublattice exchange interaction (A = 0) 〈Sz 〉 =
= cos 2α = 0, i.e., parameter α = π/4. This means

that for A = 0 the nematic state [49–54] is realized in the

first sublattice, whose parameters have the form around

〈Sz 〉 = 0, q2
2 = 〈O2

2〉 = 1, q0
2 = 〈O0

2〉 = 1.

In this case, the
”
bias field“, i.e., the second sublattice has

no effect on the first one.

From the equality of the free energy density in the FiM

and QFiM phases, we obtain the phase transition surface

between these phases

[

|A0|−4
(

K0 − J(2)
0

)

− β/3
]2

+
β

3

[

4
(

K0 − J(2)
0

)

+β/3
]

=0,

x

0 0.5 1.0 1.5 2.0

–2.0

–1.0

0

y

z = 0

= 0.7z

= 1.2z

Cross section of the phase diagram of an easy-plane non-

Heisenberg ferrimagnetic at various values of the single-ion

anisotropy constant.

or in reduced variables (x , y, z )

[y − 4(1 − x) − z/3]2 +
z
3

[

4(1− x) + z/3
]

= 0. (14)

The results obtained make it possible to construct a phase

diagram of the system under study, moreover, it is more

convenient to depict it in the reduced variables on the

(x , y) plane, for different values z , i.e., for different values
of the single-ion anisotropy constant β . Schematically, this

diagram is shown in the figure.

It can be seen from this phase diagram and relations (13)
and (14) that for z = 0 (β = 0) our results go over

exactly to the results of the work [38,39], in which the

phase states of isotropic and exchange-anisotropic non-

Heisenberg ferrimagnetics are studied. An analysis of

the results obtained in this work indicates that single-ion

anisotropy significantly increases the region of existence

of the QFiM phase and shifts both the phase transition

lines and the compensation lines to the region of large

values of the bilinear exchange interaction of the sublattice

S = 1. This result is easy to understand if we pay attention

to expression (11), from which it follows that even for

J(2)
0 ∼ K0 the average value of the magnetic moment of the

sublattice with S = 1 will be less than the nominal value for

large values of the single-ion anisotropy constant (β > |A0|).
It is also of interest to determine the type of phase

transition QFiM-FiM phase. For this, we consider the free

energy density (9) in the vicinity of the phase transition

QFiM-FiM, i.e., in the vicinity of the line defined by

relation (14). Since the second sublattice plays the role

of the
”
bias field“, and its magnetization in both phases is

the same and constant (|〈σ z 〉| = 1/2), we will focus our

attention on the first sublattice. Since the average magnetic

moment of the first sublattice is equal to cos 2α, the
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parameter α actually determines the order parameter of the

system. This statement requires some comment. As noted

earlier, when analyzing the FiM phase, the magnetization of

the sublattice with S = 1 reaches saturation asymptotically.

This means that the parameter α is not exactly equal to

zero in the FiM phase, but also tends to zero asymptotically

at large values of the bilinear exchange interaction, and

reaches the exact value α = 0 in the isotropic case for

β = 0. Therefore, the minimum free energy density in the

anisotropic case is not reached at the point α = 0, but is

somewhat shifted (due to the smallness α) near the phase

transition line. Expanding the free energy density (9) in a

series with respect to this parameter in the QFiM phase in

the vicinity of the phase transition line (α → 0) we get

F = F0 + Aα + 3α2 + Bα3 + 2α4 . . . , (15)

where

A =
β

6
, 3 = 2J(2)

0 − 2K0 +
1

2
|A0|, B = −β

9
,

2 = −1

6
|A(0)| − 8

3
J2(0) +

8

3
K(0),

or in variables (x , y, z )

A =
z
6

K0, B = − z
9

K0, 3 =
K(0)

2
(4x − 4 + y),

2 =
K(0)

6
(−y − 16x + 16).

The presence of the term linear in α in expression (15)
indicates that the S = 1 sublattice is unsaturated in the

FiM phase. This behavior of the α parameter is associated

with the presence of quadrupole means 〈Si S j + S jSi〉,
which in the case under consideration exists

q2
2 =

〈

(Sx)2 − (Sy)2
〉

=
1

2

〈

(S+)2 + (S−)2
〉

= sin 2α.

An analysis of the free energy density (15) allows one

to interpret the QFiM-FiM phase transition as a first-

order phase transition. Since the coefficient 2 > 0 in the

QFiM phase, the cubic parabola defined by the equation

A + 23α + 3Bα2 + 42α3 = 0,

has two minima, neither of which coincides with α = 0.

In the case of an isotropic ferrimagnetic, the free energy

density in the vicinity of the phase transition line QFiM-FiM

has

F = F0 + 3α2 + 2α4 + . . . ,

and the quantities 3 and 2 have the form given above.

Therefore, in the case of an isotropic non-Heisenberg

ferrimagnetic, the considered phase transition is a second-

order transition.

4. Discussion of results

The studies performed have shown that in a non-

Heisenberg ferrimagnetic with a single-ion anisotropy of

the
”
easy plane“ type and S = 1 and σ = 1/2 sublattices,

it is possible to realize as a ferrimagnetic state with an

integral magnetic moment
〈

Sz + σ z
〉

= 1/2, as well as a

phase in which both vector order parameters of the first and

second sublattices are present (〈Sz 〉, 〈σ z 〉), as well as the

tensor order parameter for the first sublattice, the presence

of which is due both to the influence of the biquadratic

exchange interaction of the first sublattice and to allowance

for easy-plane anisotropy in this sublattice. Accounting for

these interactions leads to a quantum reduction in the spin

of the first sublattice, but does not affect the value of the

magnetic moment of the second sublattice. In this case,

the second sublattice plays the role of the
”
bias“ field, and

does not allow for any values of the biquadratic exchange

interaction and single-ion anisotropy to transfer the first

sublattice to the spin nematic state [31]. We called this

phase the quadrupole-ferrimagnetic phase. Since in this

phase the average value of the spin of the first sublattice

varies depending on the ratio of the material parameters

of the sublattice, compensation of the sublattice spins is

possible in this state. We have obtained the equation of

the compensation line in the space of material parameters,

as well as the phase transition line
”
ferrimagnetic —

quadrupole-ferrimagnetic phase“. It should be noted

that our results agree with the results [38,39], in which

the properties of isotropic and exchange-anisotropic non-

Heisenberg ferrimagnetics with sublattices S = 1, σ = 1/2

were investigated. As noted earlier, taking into account

the easy-plane single-ion anisotropy in the sublattice with

S = 1 significantly expands the region of stability of the

QFiM- phase compared to isotropic ferrimagnetic, and,

most interestingly, makes the transition QFiM-FiM phase

transition of the first order. This behavior of the system

under consideration requires a detailed study of the system

dynamics. Also, the behavior of the spectra of elementary

excitations in the vicinity of the compensation line is of

great interest. The authors hope to carry out these studies

in the near future.
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