Role of LMCT states in luminescence excitation processes in europium indolecarboxylates
Tsaryuk V. I.1, Zhuravlev K. P.1
1Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: vtsaryuk@mail.ru, kpz225@mail.ru
The luminescence excitation energy transfer in europium and terbium indole-3-carboxylates, indole-3-acetates and indole-3-propionates as well as ternary indolecarboxylates containing 1,10-phenanthroline and 2,2'-bipyridine molecules have been studied. The luminescence excitation spectra, the lifetimes of the 5D0 (Eu3+) and 5D4 (Tb3+) states, and the luminescence intensity are analyzed. The decisive role of ligand-metal charge transfer (LMCT) states in the quenching of the luminescence of europium aromatic carboxylates containing a π-excessive pyrrole or indole fragment is demonstrated. Most europium compounds are characterized by quenching due to the depopulation of the 5D0 state of the Eu3+ ion through the low-energy LMCT state. But in some ternary compounds, the LMCT state being of higher energy participates in the nonradiative depopulation of the excited electronic states of the ligand. Keywords: luminescence, Eu3+, Tb3+, LMCT, indolecarboxylate, π-excessive heterocycle.
- G.F. de Sa, O.L. Malta, C. de Mello Donega, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. da Silva Jr. Coord. Chem. Rev., 196 (1), 165 (2000). DOI: 10.1016/S0010-8545(99)00054-5
- G.K. Liu, M.P. Jensen, P.M. Almond. J. Phys. Chem. A., 110 (6), 2081 (2006). DOI: 10.1021/jp0558674
- S. Petoud, J.-C.G. Bunzli, T. Glanzman, C. Piguet, Q. Xiang, R.P. Thummel. J. Lumin., 82 (1), 69 (1999). DOI: 10.1016/S0022-2313(99)00015-0
- W.M. Faustino, O.L. Malta, G.F. de Sa. J. Chem. Phys., 122, 054109 (2005). DOI: 10.1063/1.1830452
- W.M. Faustino, O.L. Malta, G.F. de Sa. Chem. Phys. Lett., 429 (4-6), 595 (2006). DOI: 10.1016/j.cplett.2006.08.059
- D.V. Lapaev, V.G. Nikiforov, V.S. Lobkov, A.A. Knyazev, Yu.G. Galyametdinov. Opt. Mater., 75, 787 (2018). DOI: 10.1016/j.optmat.2017.11.042
- K. Yanagisawa, Y. Kitagawa, T. Nakanishi, T. Seki, K. Fushimi, H. Ito, Y. Hasegawa. Chem. Eur. J., 24 (8), 1956 (2018). DOI: 10.1002/chem.201705021
- V.I. Tsaryuk, K.P. Zhuravlev. J. Lumin., 237, 118159 (2021). DOI: 10.1016/j.jlumin.2021.118159
- V. Tsaryuk, K. Zhuravlev, V. Kudryashova, V. Zolin, J. Legendziewicz, I. Pekareva, P. Gawryszewska. J. Photochem. Photobiol. A: Chem., 197 (2-3), 190 (2008). DOI: 10.1016/j.jphotochem.2007.12.022
- K.P. Zhuravlev, . Michnik, P. Gawryszewska, V.I. Tsaryuk, V.A. Kudryashova. Inorg. Chim. Acta., 492, 1 (2019). DOI: 10.1016/j.ica.2019.04.014
- A. Tine, P. Valat, J.J. Aaron. J. Lumin., 36 (2), 109 (1986). DOI: 10.1016/0022-2313(86)90059-1
- A.K. Solanki, A.M. Bhandari. J. Inorg. Nucl. Chem., 41 (9), 1311 (1979). DOI: 10.1016/0022-1902(79)80045-7
- F.-Y. He, L. Wang, Zh. Chen, J. Wu. Synth. React. Inorg. Met.-Org. Chem., 24 (4), 575 (1994). DOI: 10.1080/00945719408000134
- G.-L. Law, K.-L. Wong, K.-K. Lau, H.-L. Tam, K.-W. Cheah, W.-T. Wong. Eur. J. Inorg. Chem., 2007 (34), 5419 (2007). DOI: 10.1002/ejic.200700584
- Z.-N. Wang, X.-T. Xu, X. Lv, F.-Y. Bai, S.-Q. Liu, Y.-H. Xing. RSC Adv., 5 (126), 104263 (2015). DOI: 10.1039/C5RA19376A
- Y. Shimazaki, T. Yajima, M. Takani, O. Yamauchi. Coord. Chem. Rev., 253 (3-4), 479 (2009). DOI: 10.1016/j.ccr.2008.04.012
- V. Viossat, P. Lemoine, E. Dayan, N.-H. Dung, B. Viossat. J. Mol. Struct., 741 (1-3), 45 (2005). DOI: 10.1016/j.molstruc.2005.01.040
- B. Morzyk-Ociepa. Vibr. Spectrosc., 49 (1), 68 (2009). DOI: 10.1016/j.vibspec.2008.04.014
- K. Szmigiel-Bakalarz, A. Skoczynska, M. Lewanska, D. Gunther, O. Oeckler, M. Malik-Gajewska, D. Michalska, B. Morzyk-Ociepa. Polyhedron., 185, 114582 (2020). DOI: 10.1016/j.poly.2020.114582
- M. Cinar, M. Karabacak, A.M. Asiri. Spectrochim. Acta A., 137, 670 (2015). DOI: 10.1016/j.saa.2014.08.090
- X.-J. Deng, Q. Yu, H.-D. Bian, H.-D. Ju, B.-L. Wang. Trans. Met. Chem., 41, 591 (2016). DOI: 10.1007/s11243-016-0057-0
- T.V. Sravanthi, S.L. Manju. Eur. J. Pharm. Sci., 91, 1 (2016). DOI: 10.1016/j.ejps.2016.05.025
- A. Kumari, R.K. Singh. Bioorg. Chem., 89, 103021 (2019). DOI: 10.1016/j.bioorg.2019.103021
- R.K. Bauer, P. de Mayo, W.R. Ware, K.C. Wu. J. Phys. Chem., 86 (19), 3781 (1982). DOI: 10.1021/j100216a016
- A. Tine, Ph. Guillaume, A. Massat, J.-J. Aaron. Spectrochim. Acta A., 54 (10), 1451 (1998). DOI: 10.1016/S1386-1425(98)00046-8
- K. Zhuravlev, V. Tsaryuk, V. Kudryashova, I. Pekareva, J. Sokolnicki, Yu. Yakovlev. J. Lumin., 130 (8), 1489 (2010). DOI: 10.1016/j.jlumin.2010.03.018
- M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven. Phys. Chem. Chem. Phys., 4 (9), 1542 (2002). DOI: 10.1039/B107770H
- V.I. Tsaryuk, K.P. Zhuravlev, A.V. Vologzhanina, V.A. Kudryashova, V.F. Zolin. J. Photochem. Photobiol. A: Chem., 211 (1), 7 (2010). DOI: 10.1016/j.jphotochem.2010.01.012
- F.R. Gon calves e Silva, R. Longo, O.L. Malta, C. Piguet, J.-C.G. Bunzli. Phys. Chem. Chem. Phys., 2 (23), 5400 (2000). DOI: 10.1039/B005624N
- K.P. Zhuravlev, V.I. Tsaryuk, V.A. Kudryashova. J. Fluorine Chem., 212, 137 (2018). DOI: 10.1016/j.jfluchem.2018.06.002
- Sverdlova O.V. Elektronnye spektry v organicheskoy khimii. (Leningrad "Khimiya", Leningradskoe otd., 1985) (in Russian)
- V.F. Zolin, L.N. Puntus, V.I. Tsaryuk, V.A. Kudryashova, J. Legendziewicz, P. Gawryszewska, R. Szostak. J. Alloys Compd., 380 (1-2), 279 (2004). DOI: 10.1016/j.jallcom.2004.03.055
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.