Role of LMCT states in luminescence excitation processes in europium indolecarboxylates
Tsaryuk V. I.1, Zhuravlev K. P.1
1Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: vtsaryuk@mail.ru, kpz225@mail.ru

PDF
The luminescence excitation energy transfer in europium and terbium indole-3-carboxylates, indole-3-acetates and indole-3-propionates as well as ternary indolecarboxylates containing 1,10-phenanthroline and 2,2'-bipyridine molecules have been studied. The luminescence excitation spectra, the lifetimes of the 5D0 (Eu3+) and 5D4 (Tb3+) states, and the luminescence intensity are analyzed. The decisive role of ligand-metal charge transfer (LMCT) states in the quenching of the luminescence of europium aromatic carboxylates containing a π-excessive pyrrole or indole fragment is demonstrated. Most europium compounds are characterized by quenching due to the depopulation of the 5D0 state of the Eu3+ ion through the low-energy LMCT state. But in some ternary compounds, the LMCT state being of higher energy participates in the nonradiative depopulation of the excited electronic states of the ligand. Keywords: luminescence, Eu3+, Tb3+, LMCT, indolecarboxylate, π-excessive heterocycle.
  1. G.F. de Sa, O.L. Malta, C. de Mello Donega, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. da Silva Jr. Coord. Chem. Rev., 196 (1), 165 (2000). DOI: 10.1016/S0010-8545(99)00054-5
  2. G.K. Liu, M.P. Jensen, P.M. Almond. J. Phys. Chem. A., 110 (6), 2081 (2006). DOI: 10.1021/jp0558674
  3. S. Petoud, J.-C.G. Bunzli, T. Glanzman, C. Piguet, Q. Xiang, R.P. Thummel. J. Lumin., 82 (1), 69 (1999). DOI: 10.1016/S0022-2313(99)00015-0
  4. W.M. Faustino, O.L. Malta, G.F. de Sa. J. Chem. Phys., 122, 054109 (2005). DOI: 10.1063/1.1830452
  5. W.M. Faustino, O.L. Malta, G.F. de Sa. Chem. Phys. Lett., 429 (4-6), 595 (2006). DOI: 10.1016/j.cplett.2006.08.059
  6. D.V. Lapaev, V.G. Nikiforov, V.S. Lobkov, A.A. Knyazev, Yu.G. Galyametdinov. Opt. Mater., 75, 787 (2018). DOI: 10.1016/j.optmat.2017.11.042
  7. K. Yanagisawa, Y. Kitagawa, T. Nakanishi, T. Seki, K. Fushimi, H. Ito, Y. Hasegawa. Chem. Eur. J., 24 (8), 1956 (2018). DOI: 10.1002/chem.201705021
  8. V.I. Tsaryuk, K.P. Zhuravlev. J. Lumin., 237, 118159 (2021). DOI: 10.1016/j.jlumin.2021.118159
  9. V. Tsaryuk, K. Zhuravlev, V. Kudryashova, V. Zolin, J. Legendziewicz, I. Pekareva, P. Gawryszewska. J. Photochem. Photobiol. A: Chem., 197 (2-3), 190 (2008). DOI: 10.1016/j.jphotochem.2007.12.022
  10. K.P. Zhuravlev, . Michnik, P. Gawryszewska, V.I. Tsaryuk, V.A. Kudryashova. Inorg. Chim. Acta., 492, 1 (2019). DOI: 10.1016/j.ica.2019.04.014
  11. A. Tine, P. Valat, J.J. Aaron. J. Lumin., 36 (2), 109 (1986). DOI: 10.1016/0022-2313(86)90059-1
  12. A.K. Solanki, A.M. Bhandari. J. Inorg. Nucl. Chem., 41 (9), 1311 (1979). DOI: 10.1016/0022-1902(79)80045-7
  13. F.-Y. He, L. Wang, Zh. Chen, J. Wu. Synth. React. Inorg. Met.-Org. Chem., 24 (4), 575 (1994). DOI: 10.1080/00945719408000134
  14. G.-L. Law, K.-L. Wong, K.-K. Lau, H.-L. Tam, K.-W. Cheah, W.-T. Wong. Eur. J. Inorg. Chem., 2007 (34), 5419 (2007). DOI: 10.1002/ejic.200700584
  15. Z.-N. Wang, X.-T. Xu, X. Lv, F.-Y. Bai, S.-Q. Liu, Y.-H. Xing. RSC Adv., 5 (126), 104263 (2015). DOI: 10.1039/C5RA19376A
  16. Y. Shimazaki, T. Yajima, M. Takani, O. Yamauchi. Coord. Chem. Rev., 253 (3-4), 479 (2009). DOI: 10.1016/j.ccr.2008.04.012
  17. V. Viossat, P. Lemoine, E. Dayan, N.-H. Dung, B. Viossat. J. Mol. Struct., 741 (1-3), 45 (2005). DOI: 10.1016/j.molstruc.2005.01.040
  18. B. Morzyk-Ociepa. Vibr. Spectrosc., 49 (1), 68 (2009). DOI: 10.1016/j.vibspec.2008.04.014
  19. K. Szmigiel-Bakalarz, A. Skoczynska, M. Lewanska, D. Gunther, O. Oeckler, M. Malik-Gajewska, D. Michalska, B. Morzyk-Ociepa. Polyhedron., 185, 114582 (2020). DOI: 10.1016/j.poly.2020.114582
  20. M. Cinar, M. Karabacak, A.M. Asiri. Spectrochim. Acta A., 137, 670 (2015). DOI: 10.1016/j.saa.2014.08.090
  21. X.-J. Deng, Q. Yu, H.-D. Bian, H.-D. Ju, B.-L. Wang. Trans. Met. Chem., 41, 591 (2016). DOI: 10.1007/s11243-016-0057-0
  22. T.V. Sravanthi, S.L. Manju. Eur. J. Pharm. Sci., 91, 1 (2016). DOI: 10.1016/j.ejps.2016.05.025
  23. A. Kumari, R.K. Singh. Bioorg. Chem., 89, 103021 (2019). DOI: 10.1016/j.bioorg.2019.103021
  24. R.K. Bauer, P. de Mayo, W.R. Ware, K.C. Wu. J. Phys. Chem., 86 (19), 3781 (1982). DOI: 10.1021/j100216a016
  25. A. Tine, Ph. Guillaume, A. Massat, J.-J. Aaron. Spectrochim. Acta A., 54 (10), 1451 (1998). DOI: 10.1016/S1386-1425(98)00046-8
  26. K. Zhuravlev, V. Tsaryuk, V. Kudryashova, I. Pekareva, J. Sokolnicki, Yu. Yakovlev. J. Lumin., 130 (8), 1489 (2010). DOI: 10.1016/j.jlumin.2010.03.018
  27. M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven. Phys. Chem. Chem. Phys., 4 (9), 1542 (2002). DOI: 10.1039/B107770H
  28. V.I. Tsaryuk, K.P. Zhuravlev, A.V. Vologzhanina, V.A. Kudryashova, V.F. Zolin. J. Photochem. Photobiol. A: Chem., 211 (1), 7 (2010). DOI: 10.1016/j.jphotochem.2010.01.012
  29. F.R. Gon calves e Silva, R. Longo, O.L. Malta, C. Piguet, J.-C.G. Bunzli. Phys. Chem. Chem. Phys., 2 (23), 5400 (2000). DOI: 10.1039/B005624N
  30. K.P. Zhuravlev, V.I. Tsaryuk, V.A. Kudryashova. J. Fluorine Chem., 212, 137 (2018). DOI: 10.1016/j.jfluchem.2018.06.002
  31. Sverdlova O.V. Elektronnye spektry v organicheskoy khimii. (Leningrad "Khimiya", Leningradskoe otd., 1985) (in Russian)
  32. V.F. Zolin, L.N. Puntus, V.I. Tsaryuk, V.A. Kudryashova, J. Legendziewicz, P. Gawryszewska, R. Szostak. J. Alloys Compd., 380 (1-2), 279 (2004). DOI: 10.1016/j.jallcom.2004.03.055

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru