Spectral-luminescence properties of ZrO2-Sc2O3-Tb2O3 crystals
Batygov S. Kh. 1, Borik M. A. 1, Kulebyakin A. V. 1, Larina N.A. 2, Lomonova E. E. 1, Myzina V. A. 1, Ryabochkina P. A. 2, Sidorova N. V. 2, Taratynova A. D. 2, Tabachkova N. Yu. 1,3
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Ogarev Mordovian State University, Saransk, Russia
3National University of Science and Technology MISiS, Moscow, Russia
Email: sbat@lst.gpi.ru, borik@lst.gpi.ru, kulebyakin@lst.gpi.ru, saharova.1996@mail.ru, lomonova@lst.gpi.ru, vamyzina@lst.gpi.ru, ryabochkina@freemail.mrsu.ru, ya.natalka2112@yandex.ru, alina.taratynova@mail.ru, ntabachkova@gmail.com

PDF
Crystals of the concentration series ZrO2-(8-10) mol.% Sc2O3-(1-2) mol.% Tb2O3 were grown by the method of directional crystallization of the melt from a cold container. Analysis of the spectral-luminescence characteristics of these crystals after growth and after annealing processing in a vacuum revealed the presence of both Tb3+ and Tb4+ ions in them. In crystals ZrO2-(8-10) mol.% Sc2O3-(1-2) mol.% Tb2O3, the presence of a process of non-radiative energy transfer from Tb4+ ions to Tb3+ ions was revealed. Keywords: solid solutions of zirconium dioxide, luminescence, terbium ions.
  1. B. Dhabekar, S.N. Menon, E. Alagu Raja, A.K. Bakshi, A.K. Singh, M.P. Chougaonkar, Y.S. Mayya. Beam Interactions with Materials and Atoms, 269 (16), 1844 (2011). DOI: 10.1016/j.nimb.2011.05.001
  2. Guifang Li, Quanxi Cao, Zhimin Li, Yunxia Huang, Yunge Wei, Junyan Shi. J. All. Comp., 485 (1-2), 561 (2009). DOI: 10.1016/j.jallcom.2009.06.026
  3. C.C. Kang, R.S. Liu. J. Lumin., 122, 574 (2007). DOI: 10.1016/j.jlumin.2006.01.228
  4. P.W. Metz, D.T. Marzahl, A. Majid, C. Krankel, G. Huber. Laser Photon. Rev., 10, 35 (2016). DOI: 10.1002/lpor.201500274
  5. Bin Lu, Ji-Guang Li, Xudong Sun, Yoshio Sakka. J. Am. Ceram. Soc., 98 (12), 3877 (2015). DOI: 10.1111/jace.13834
  6. E. Cavalli, E.A. Volkova. Journal of Solid State Chemistry, 301, 122306 (2021). DOI: 10.1016/j.jssc.2021.122306
  7. K. Okamoto, T. Ebina, N. Fujii, K. Konishi, Yu Sato, T. Kashima, R. Nakano, H. Hioki, H. Takeuchi, J. Yumoto, M. Matsuzaki, Y. Ikegaya. Sci. Adv., 7 (7), eabd2529 2021. DOI: 10.1126/sciadv.abd2529
  8. R.K. Verma, K. Kumar, S.B. Rai. Solid State Sci., 12 (7), 1146 (2010). DOI: 10.1016/j.solidstatesciences.2010.04.004
  9. H.-Y. He. Micro and Nanosystems, 8 (2), 114 (2016). DOI: 10.2174/1876402909666170126122221
  10. B. Sathyaseelan, E. Manikandan, I. Baskaran, K. Senthilnathan, K. Sivakumar, M.K. Moodley, R. Ladchumananandasivam, M. Maaza. J. All. Comp., 694, 556 (2017). DOI: 10.1016/j.jallcom.2016.10.002
  11. P. Vavrak, J. Mrazek, W. Blanc, J. Aubrecht, M. Kamradek, O. Podrazky, P. Honzatko. In: Micro-structured and Specialty Optical Fibres VII, ed. by K. Kalli, A. Mendez, P. Peterka. (Proceedings of SPIE, Bellingham, Washington USA, 2021), vol. 11773, p. 1177317. DOI: 10.1117/12.2589127
  12. P.A. Ryabochkina, A.N. Chabushkin, A.A. Lyapin, E.E. Lomonova, N.G. Zakharov, K.V. Vorontsov. Laser Phys. Lett., 14 (5), 055807 (2017). DOI: 10.1088/1612-202X/aa69a5
  13. C. Petit, L. Montanaro, P. Palmero. International Journal of Applied Ceramic Technology, 15 (4), 820 (2018). DOI: 10.1111/ijac.12878
  14. Tae-Yun Kang, Ji-Young Seo, Jeong-Hyun Ryu, Kwang-Mahn Kim, Jae-Sung Kwon. Journal of Biomedical Materials Research, 109 (7), 1196 (2021). DOI: 10.1002/jbm.a.37113
  15. K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, A. Opalinska, J.D. Fidelus, W. Lojkowski. Optical Materials, 32 (8), 827 (2010). DOI: 10.1016/j.optmat.2010.03.002
  16. M.R.N. Soares, C. Nico, D. Oliveira, M. Peres, L. Rino, A.J.S. Fernandes, T. Monteiro, F.M. Costa. Materials Science and Engineering: B, 177 (10), 712 (2012). DOI: 10.1016/j.mseb.2011.10.010
  17. S.D. Meetei, S.D. Singh. J. Lumin., 147, 328 (2014). DOI: 10.1016/j.jlumin.2013.11.064
  18. M.A. Borik, T.V. Volkova, I.E. Kuritsyna, E.E. Lomonova, V.A. Myzina, P.A. Ryabochkina, N.Yu. Tabachkova. J. All. Comp., 770, 320 (2019). DOI: 10.1016/j.jallcom.2018.08.117
  19. E. De La Rosa-Cruz, L.A. Di az-Torres, R.A. Rodri guez-Rojas, M.A. Meneses-Nava, O. Barbosa-Garci a, P. Salas. Appl. Phys. Lett., 83, 4903 (2003). DOI: 10.1063/1.1632020
  20. P.A. Ryabochkina, N.V. Sidorova, S.N. Ushakov, E.E. Lomonova. Quant. Electron., 44 (2), 135 (2014). DOI: 10.1070/QE2014v044n02ABEH015276
  21. M.R.N. Soares, T. Holz, F. Oliveira, F.M. Costa, T. Monteiro. RSC Adv., 5 (26), 20138 (2015). DOI: 10.1039/C5RA00189G
  22. S. Stojadinovic, N. Tadic, R. Vasilic. Mater. Lett., 219, 251 (2018). DOI: 10.1016/j.matlet.2018.02.126
  23. K. Srigurunathan, R. Meenambal, A. Guleria, D. Kumar, J.M. da F. Ferreira, S. Kannan. ACS Biomater. Sci. Eng., 5, 1725 (2019). DOI: 10.1021/acsbiomaterials.8b01570
  24. A. Ciric, S. Stojadinovic. J. All. Comp., 832, 154907 (2020). DOI: 10.1016/j.jallcom.2020.154907
  25. D. Prakashbabu, H.B. Ramalingam, R. Hari Krishna, B.M. Nagabhushana, C. Shivakumara, K. Munirathnam, S. Ponkumar. J. Lumin., 192, 496 (2017). DOI: 10.1016/j.jlumin.2017.07.015
  26. C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, M. Boutonnet, M. Sanchez-dominguez. Phys. Chem. Chem. Phys., 16, 703 (2014). DOI: 10.1039/c3cp52893f
  27. I. Ahemen, F.B. Dejene. J. Mater Sci: Mater. Electron., 29, 2140 (2018). DOI: 10.1007/s10854-017-8126-5
  28. X. Qu, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong. Jpn. J. Appl. Phys., 50, 01AK06 (2011). DOI: 10.1143/JJAP.50.01AK06
  29. V.R. Panse, N.S. Kokode, S.J. Dhoble. Optik, 126, 4782 (2015). DOI: 10.1016/j.ijleo.2015.07.062
  30. Fu Ning, Wang Xixin, Guo Limin, Zhao Jianling, Zhang Xinghua, Lin Jing,Gong Liyuan, Wang Mingli, Yang Yang. J. Mater. Sci: Mater. Electron., 28, 7253 (2017). DOI: 10.1007/s10854-017-6407-7
  31. Yizhu Xie, Ziwei Ma, Lixin Liu, Yuroug Su, Haiting Zhao, Yanxia Liu, Zhenxing Zhang, Huigao Duan, Jian Li, Erqing Xiea. Appl. Phys. Lett., 97, 141916 (2010). DOI: 10.1063/1.3496471
  32. A. Feinberg, C.H. Perr. J. Phys. Chem. Solids, 42 (2), 513 (1981). DOI: 10.1016/0022-3697(81)90032-9
  33. M. Ishigame, E. Yoshid. Solid State Ionics, 23 (2), 211 (1987). DOI: 10.1016/0167-2738(87)90053-1
  34. M. Yashima, K. Ohtake, M. Kakihana, H. Arashi, M. Yoshimura. J. Phys. Chem. Solids, 57 (1), 17 (1996). DOI: 10.1016/0022-3697(95)00085-2
  35. V.I. Alexsandrov, Yu.K. Voron'ko, B.V. Ignat'ev, E.E. Lomonova, V.V. Osiko, A.A. Sobol. Sov. Phys. Sol. State, 20 (2), 305 (1978)
  36. C.H. Perry, D.-W. Liu, L.R.P. Ingel. J. Am. Ceram. Soc., 68 (8), 184 (1985). DOI: 10.1111/j.1151-2916.1985.tb10176.x
  37. Y. Hemberger, N. Wichtner, C. Berthold, K.G. Nickel. International Journal of Applied Ceramic Technology, 13 (1), 116 (2016). DOI: 10.1111/ijac.12434
  38. M. Behrendt, S. Mahlik, K. Szczodrowski, B. Kuklinskia, M. Grinberg. Phys. Chem. Chem. Phys, 18, 22266 (2016). DOI: 10.1039/C6CP03075K

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru