Modeling structural and energy characteristics of atoms in a GaS 2D-crystal with point defects
Asadov M.M.1, Mustafayeva S.N.2,1,3, Guseinova S.S.3,1,2, Lukichev V.F.1,2,3, Tagiev D.B.1
1Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiyev, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
2Institute of Physics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
3Valiev Institute of Physics and Technology of RAS, Moscow, Russia
Email: mirasadov@gmail.com, solmust@gmail.com

PDF
The properties of hexagonal gallium monosulphide (GaS) were modeled within the framework of the density functionality theory (DFT) taking into account the impact of vacancies related to a short range ordered structure. It is shown that electron irradiation of a GaS monolayer causes a decrease in conductivity due to formation of point defects. The band structure, density of states and energy properties of GaS supercells with 36 and 48 atoms with monovacancies were calculated. DFT calculations were performed to obtain values of the formation energy of GaS and Ga and S atom vacancies, as well as to determine the degree of vacancies' impact on the properties. Impact of GaS compound composition on the chemical potential value was studied taking into account the Ga-S phase diagram. Key words: modeling, DFT calculation, GaS supercells, point defects, energy structure, density of states, formation energy, chemical potential.
  1. S.M. Asadov S.N. Mustafaeva, V.F. Lukichev. Russ. Microelectron. 48, 422 (2019). https://doi.org/10.1134/S1063739719660016
  2. S.N. Mustafaeva, M.M. Asadov, A.A. Ismailov. Phys. Solid State 50, 2040 (2008). https://doi.org/10.1134/S1063783408110073
  3. N.Kh. Abrikosov, V.F. Bankina, L.V. Poretskaya, E.V. Skudnova, S.N. Chizhevskaya. Poluprovodnikovye khalkogenidy I splavy na ikh osnove. Nauka, M. (1975). 220 p. (in Russian)
  4. Semiconductors Data Handbook / Ed. O. Madelung. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-18865-7
  5. S.N. Mustafaeva, M.M. Asadov. Solid State Commun. 45, 491 (1983). https://doi.org/10.1016/0038-1098(83)90159-X
  6. D. Wickramaratne, F. Zahid, R.K. Lake. J. Appl. Phys. 118, 7, 075101 (2015). doi:10.1063/1.4928559
  7. A. Kuhn, A. Bourdon, J. Rigoult, A. Rimsky. Phys. Rev. B 25, 4081 (1982). https://doi.org/10.1103/PhysRevB.25.4081
  8. Z.A. Dzhakhangirli. Phys. Solid State 54, 1092 (2012). https://doi.org/10.1134/S106378341205008
  9. V.V. Karpov, A.V. Bandura, R.A. Evarestov. Phys. Solid Solid State 62, 1017 (2020). https://doi.org/10.1134/s1063783420060116
  10. S.N. Mustafaeva, M.M. Asadov. Mater.Chem. Phys. 15, 185 (1986). https://doi.org/10.1016/0254-0584(86)90123-9
  11. G. Micocci, A. Serra, A. Tepore. J. Appl. Phys. 82, 2365 (1997). https://doi.org/10.1063/1.366046
  12. S. Shigetomi, T. Ikar. J. Appl. Phys. 95, 6480 (2004). https://doi.org/10.1063/1.1715143
  13. Y.-K. Hsu, C.-S. Chang, W.-C. Huang. J. Appl. Phys. 96, 1563 (2004). https://doi.org/10.1063/1.1760238
  14. M.M. Asadov, S.N. Mustafaeva, S.S. Guseinov, V.F. Lukichev. Phys. Solid State 62, 2224 (2020). https://doi.org/10.1134/S1063783420110037
  15. Inorganic Nanosheets and Nanosheet-Based Materials. Fundamentals and Applications of Two-Dimensional Sys tems / Eds T. Nakato, J. Kawamata, S. Takagi. Springer, Jpn KK (2017). 542 p. ISBN 978-4-431-56494-2
  16. Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, X. Cheng. J. Cryst. Growth. 381, 10 (2013). https://doi.org/10.1016/j.jcrysgro.2013.06.030
  17. T. Wang, J. Li, Q. Zhao, Z. Yin, Y. Zhang, B. Chen, Y. Xie, W. Jie. Materials 11, 186 (2018). https://doi.org/10.3390/ma11020186
  18. S.M. Asadov, S.N. Mustafaeva, A.N. Mammadov. J. Therm. Anal. Calorim. 133, 1135 (2018). https://doi.org/10.1007/s10973-018-6967-7
  19. H.L. Zhuang, R.G. Hennig. Chem. Mater. 25, 3232 (2013). https://doi.org/ 10.1021/cm401661x
  20. Y. Ma, Y. Dai, M. Guo, L. Yu, B. Huang. Phys. Chem. Chem. Phys. 15, 7098 (2013). https://doi.org/10.1039/C3CP50233C
  21. V. Zolyomi, N.D. Drummond, V.I. Fal'ko. Phys. Rev. B 87, 195403 (2013). https://doi.org/10.1103/PhysRevB.87.195403
  22. C.S. Jung, F. Shojaei, K. Park, J.Y. Oh, H.S. Im, D.M. Jang, J. Park, H.S. Kang. ACS Nano 9, 9585 (2015). https://doi.org/10.1021/acsnano.5b04876
  23. E.G. Seebauer, M.C. Kratzer. Charged Semiconductor Defects. Structure, Thermodynamics and Diffusion. Springer-Verlag London (2009). 294 p. ISBN 978-1-84882-058-6
  24. A. Alkauskas, P. Deak, J. Neugebauer, A. Pasquarello, C.G. Van de Walle. Advanced Calculations for Defects in Materials (Electronic Structure Methods). Wiley-VCH Verlag \& Co. KGaA, Boschstr. Weinheim, Germany (2011). 384 p. ISBN: 978-3-527-41024-8
  25. R.A. Evarestov. Theoretical Modeling of Inorganic Nanostructures. 2nd ed.Springer. Nature. Switzerland AG. (2020). 857 p. ISBN 978-3-030-42993-5
  26. H. Chen, Y. Li, L. Huang, J. Li. RSC Adv. 5, 50883 (2015). https://doi.org/10.1039/C5RA08329J
  27. J.P. Perdew, W. Yue. Phys. Rev. B 33, 8800 (1986). https://doi.org/10.1103/physrevb.33.8800
  28. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B. 46, 6671 (1992). https://doi.org/10.1103/physrevb.46.6671
  29. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/physrevlett.77.3865
  30. M.M. Asadov, S.N. Mustafaeva, S.S. Guseinova, V.F. Lukichev, D.B. Tagiev. Phys. Solid State 63, 797 (2021). https://doi.org/10.1134/S1063783421050036
  31. H.J. Monkhorst. Phys. Rev. B 13, 5188 (1976). http://dx.doi.org/10.1103/PhysRevB.13.5188
  32. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes. 3nd ed. Cambridge University Press, Cambridge (2007). 490 p. ISBN-13 978-0-511-33555-6
  33. P. Perdew, W. Yang, K. Burke, Z. Yang, E.K.U. Gross, M. Schefflerg, G.E. Scuseria, T.M. Henderson, I.Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, A. Gorling. Proc. Nat. Acad. Sci. 114, 2801 (2017). https://doi.org/10.1073/pnas.1621352114
  34. I. Barin, O. Knacke, O. Kubaschewski. Thermochemical properties of inorganic substances. Supplement, Springer-Verlag, Berlin. Heidelberg GmbH (1977). P. 270. ISBN 978-3-662-02295-5
  35. O. Kubashewski, C.B. Alcock, P.J. Spencer. Mater. Thermochem. Pergamon. 6th ed. Press, Oxford, N. Y. (1993). 363 p. ISBN-13:978-0080418896
  36. A.S. Abbasov. Termodinamicheskiye svoistva nekotorykh poluprovodnikovykh veshchestv. Izd-vo Elm., Baku (1981). 88 p. (in Russian)
  37. C.G. Van de Walle, A. Janotti. Advances in Electronic Structure Methods for Defects and Impurities in Solids / Eds A. Alkauskas, P. Deak, J. Neugebauer, A. Pasquarello, C.G. Van de Walle. Advanced Calculations for Defects in Materials (Electronic Structure Methods). Wiley-VCH Verlag \& Co. KGaA, Weinheim, Germany (2011). P. 1-16. ISBN:978-3-527-41024-8
  38. G. Job, R. Ruffler. Physikalische Chemie. Vieweg + Teubner Verlag. Springer Fachmedien Wiesbaden GmbH. (2011). ISBN 978-3-8351-0040

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru