Effect of the defectiveness of the carbon sublattice on the elastic properties of cubic titanium carbide TiCy
Gusev A. I.1
1Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
Email: gusev@ihim.uran.ru

PDF
Changes in the elastic constants cij of disordered cubic titanium carbide TiCy with an increasing the defectiveness of the carbon sublattice are estimated for the first time. It was found that the deviation of titanium carbide from the stoichiometric composition TiC1.0 leads to a decrease in the elastic stiffness constants cij of disordered TiCy carbide with a simultaneous increase in elastic anisotropy. The distributions of Young's modulus E and Poisson's ratio μ in the (100) plane and the distributions of the shear modulus G in the (100), (110), and (111) planes have been calculated as functions on the crystallographic direction [hkl] and on the relative carbon content y in TiCy carbide. The lowest values of the shear modulus Ghkl for TiCy are observed in the (111) plane. Keywords: Titanium carbide, Nonstoichiometry, Vacancies, Elastic properties.
  1. A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides. Springer-Verlag, Berlin--Heidelberg--N. Y. (2001). 608 p
  2. J.L. Murray. In: Binary Alloy Phase Diagrams / Ed. T.B. Massalski. Metals Park (Ohio, USA): ASM Intern. Publ. (1987). V. 1. P. 593--596
  3. V.N. Lipatnikov, A.I. Gusev, Uporyadochenie v karbidakh titana i vanadiya (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2000), 265 pp. (in Russian)
  4. S.Y. Zhang. Mater. Sci. Eng. A 163, 1, 141 (1993)
  5. J. Musil. Surf. Coat. Technol. 125, 1-3, 322 (2000)
  6. C.W. Morton, D.J. Wills, K. Stjernberg. Int. J. Refr. Met. Hard Mater. 23, 4-6, 287 (2005)
  7. A.P. Miodownik. Mater. Sci. Technol. 10, 3, 190 (1994)
  8. R.H.J. Hannink, M.J. Murray. J. Mater. Sci. 9, 2, 223 (1974)
  9. R. Chang, L.J. Graham. J. App. Phys. 37, 10, 3778 (1966)
  10. J.J. Gilman, B.W. Roberts. J. Appl. Phys. 32, 7, 1405 (1961)
  11. L. Pintschovius, W. Reichardt, B. Scheerer. J. Phys. C 11, 8, 1557 (1978)
  12. I.N. Frantsevich, E.A. Zhurakovskiy, A.B. Lyashchenko. Izv. Akad. Nauk SSSR. Neorg. Mater. 3, 1, 8 (1967)
  13. S.P. Dodd, M. Cankurtaran, B. James. J. Mater. Sci. 38, 6, 1107 (2003)
  14. W.-X. Feng, S.-X. Cui, H.-Q. Hu, G.-Q. Zhang. Physica B 406, 19, 3631 (2011)
  15. V.G. Bukatov, Issledovanie fiziko-mekhanicheskikh svoystv karbidov tugoplavkikh metallov i nekotorykh splavov na ikh osnove, Extended Abstract of Cand. Sci. Dissertation (MISiS, M., 1979), 21 pp. (in Russian)
  16. Yu.G. Tkachenko, S.S. Ordan'yan, V.K. Yulyugin, D.Z. Yurchenko, G.S. Tabatadze, I.B. Panteleev, Poroshk. Metall., N 6, 45 (1979) (in Russian)
  17. S.V. Borisov, B.V. Mitrofanov, G.P. Shveikin, Izv. Akad. Nauk SSSR. Neorg. Mater. 15, 12, 2142 (1979)
  18. Q. Yang, W. Lengauer, T. Koch, M. Scheerer, I. Smid. J. Alloys Comp. 309, 1-2, L5 (2000)
  19. R. Ahuja, O. Eriksson, J.M. Wills, B. Johansson. Phys. Rev. B 53, 6, 3072 (1996)
  20. W. Wolf, R. Podloucky, T. Antretter, F.D. Fischer. Phil. Mag. B 79, 6, 839 (1999)
  21. A. Zaoui, B. Bouhafs, P. Ruterana. Mater. Chem. Phys. 91, 1, 108 (2005)
  22. Y. Yang, H. Lu, C. Yu, J.M. Chen. J. Alloys Comp. 485, 1-2, 542 (2009)
  23. Y.H. Li, W.F. Wang, B. Zhu, M. Xu, J. Zhu, Y.J. Hao, W.H. Li, X.J. Long. Sci. China: Phys. Mech. Astron. 54, 12, 2196 (2011)
  24. X.-H. Wang, M. Zhang, L. Ruan, Z.-D. Zou. Trans. Nonferrous Met. Soc. China 21, 6, 1373 (2011)
  25. V. Krasnenko, M.G. Brik. Solid State Sci. 14, 10, 1431 (2012)
  26. Y.Z. Liu, Y.H. Jiang, R. Zhou, J. Feng. J. Alloys Comp. 582, 500 (2014)
  27. Sh.-Q. Ma, Y. Liu, J.-W. Ye, B. Wang. Commun. Theor. Phys. 62, 6, 895 (2014)
  28. D.Y. Dang, J.L. Fan, H.R. Gong. J. Appl. Phys. 116, 3, 033509 (2014)
  29. A.R. Oganov, C.W. Glass. J. Chem. Phys. 124, 24, 244704 (2006)
  30. G. Kresse, J. Furthmuller. Comput. Mater. Sci. 6, 1, 15 (1996).
  31. G. Kresse, J. Furthmuller. Phys. Rev. B 54, 16, 11169 (1996)
  32. G. Kresse, D. Joubert. Phys. Rev. B 59, 3, 1758 (1999)
  33. D.A. Aksyonov, A.G. Lipnitskii, Yu.R. Kolobov. Comp. Mater. Sci. 65, 434 (2012)
  34. C. Jiang, W. Jiang. Phys. Status Solidi 251, 3, 533 (2014)
  35. R.E. Newnham. Properties of Materials. Anisotropy, Symmetry, Structure. Oxford Univ. Press, N. Y. (2005). 378 p
  36. A.A. Valeeva, A.I. Gusev. Intern. J. Refr. Met. Hard Mater. 95, 105435 (2021)
  37. T. Gnaupel-Herold, P.C. Brand, H.J. Prask. J. Appl. Crystallogr. 31, 6, 929 (1998)
  38. C. Zener. Elasticity and Anelasticity of Metals. University of Chicago, Chicago (1948). 170 p
  39. R. Hill. Proc. Phys. Soc. A 65, 5, 349 (1952)
  40. E. Schreiber, O.L. Anderson, N. Soga. Elastic Constants and Their Measurements. McGraw-Hill, N. Y. (1973). 196 p
  41. O.L. Anderson. In: Lattice Dynamics / Physical Acoustics. Principles and Methods. V. III. Part B. Ch. 2 / Ed. W.P. Mason. Acad. Press, N.Y.--London (1965). P. 45
  42. I. Khidirov, V.V. Getmanskiy, A.S. Papiev, Sh.A. Makhmudov, Int. Sci. J. "Altern. Energy Ecol. (ISJAEE)", N 01-03 (285-287), 56-66 (2019). DOI: 10.15518/isjaee.2019.01-03.056-066

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru