08,07

Effect of the defectiveness of the carbon sublattice on the elastic properties of cubic titanium carbide TiC_y

© A.I. Gusev

Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia E-mail: gusev@ihim.uran.ru

Received June 18, 2021 Revised June 18, 2021 Accepted June 22, 2021

> Changes in the elastic constants c_{ij} of disordered cubic titanium carbide TiC_y with an increasing the defectiveness of the carbon sublattice are estimated for the first time. It was found that the deviation of titanium carbide from the stoichiometric composition TiC_{1.0} leads to a decrease in the elastic stiffness constants c_{ij} of disordered TiC_y carbide with a simultaneous increase in elastic anisotropy. The distributions of Young's modulus *E* and Poisson's ratio μ in the (100) plane and the distributions of the shear modulus *G* in the (100), (110), and (111) planes have been calculated as functions on the crystallographic direction [*hkl*] and on the relative carbon content *y* in TiC_y carbide. The lowest values of the shear modulus *G_{hkl}* for TiC_y are observed in the (111) plane.

Keywords: Titanium carbide, Nonstoichiometry, Vacancies, Elastic properties.

DOI: 10.21883/PSS.2022.13.52322.151

1. Introduction

Cubic (space group $Fm\bar{3}m$) titanium carbide TiC_y has the widest homogeneity range (from ~ TiC_{0.47-0.48} to TiC_{1.00}) among all strongly nonstoichiometric carbides [1,2]. All its properties depend strongly on relative carbon content y and vary significantly within the homogeneity range [1,3]. Offering high hardness and low density combined with high thermal and corrosion resistance, titanium carbide has great potential for engineering application, e.g., in tungstenless hard alloys for metal working [3,4], nanocomposites [3], hard coatings [5], and grain growth inhibitors [6].

The determination of TiC_y compositions combining high mechanical characteristics with reduced brittleness and enhanced ductile properties is a crucial goal of research focused on titanium carbide. A change in the nonstoichiometry of titanium carbide may be instrumental in achieving this goal.

Data on the elastic properties of titanium carbide are needed to predict the mechanical properties of various phases of titanium carbide and determine the conditions for mechanochemical synthesis (specifically, high-energy milling) of nanocrystalline TiC_y powders.

No systematic measurements of the elastic properties of disordered cubic titanium carbide TiC_y as functions of its composition have been carried out to date, although certain data on bulk modulus *B* and shear modulus *G* of TiC_y with different values of carbon content *y* have been published [7–18].

Theoretical estimates of the elastic properties, which are normally obtained using different versions of the density functional theory with local density (LDA) and generalized gradient (GGA) approximations for exchange-correlation potentials, are available only for stoichiometric titanium carbide TiC_{1.0} and were presented in [14,19–28]. The results of theoretical calculations of elastic constants c_{ij} of stoichiometric TiC_{1.0} carried out in different studies vary significantly: according to [14,24,25], $c_{11} \cong 470$, $c_{12} \cong 105$, and $c_{44} \cong 170$ GPa, while the authors of [20,21] provide higher estimated values of the same elastic stiffness constants (603–610, 103–124, and 173–181 GPa, respectively). Note that calculations relying on the local density approximation yield higher values of c_{ij} than the calculations with GGA.

More recently, the studies into potential stable superstructures in nonstoichiometric carbides have focused on an evolutionary algorithm implemented in USPEX (Universal Structure Predictor: Evolutionary Xtallography) [29]. The elastic properties of predicted carbide superstructures are estimated by calculating the coefficients of the elasticity tensor with the use of the finite difference method [30] implemented in VASP (Vienna Ab initio Simulation Package) [31,32]. However, the software solutions mentioned above allow one to estimate only the elastic properties of ordered carbide phases (superstructures), while the elastic properties of disordered nonstoichiometric carbides remain unknown. For example, the authors of [33,34] calculated the elastic properties of the following two ordered phases of titanium carbide stable at T = 0 K and P = 0 GPa: superstructure Ti₂C with trigonal and cubic symmetry and superstructure Ti₃C₂ with monoclinic or orthorhombic symmetry. According to [34], two tetragonal phases Ti₂C and Ti₃C₂ are stable in titanium carbide at pressures exceeding 40 GPa.

The present study is focused on the semiempirical estimation of elastic constants c_{ij} of disordered nonstoichiometric titanium carbide TiC_y as functions of its composition. The estimation is performed by analyzing simultaneously the experimental data from [7–18] on the mechanical properties of titanium carbide with different carbon content and the theoretical data on the elastic constants of stoichiometric carbide TiC_{1.0}. This is the first time when such an approach to estimating the elastic properties of disordered phases is applied to nonstoichiometric compounds of the family of cubic carbides of transition metals.

2. Results and discussion

The dependence of bulk modulus *B* of titanium carbide TiC_y on relative carbon content *y* is plotted in Fig. 1 based on the experimental data from [7–14]. The increase in defectiveness of the carbon sublattice as a result of *y* reduction, which decreases from 1.0 to 0.5, is accompanied by a slight (~ 20 GPa) reduction in *B*. According to the approximation of the experimental *B* values, the bulk modulus of stoichiometric carbide TiC_{1.0}0 is $B_{y=1} = 241.7$ GPa. Quantitatively, dependence B(y) of the bulk modulus of titanium carbide on the carbon content at 300 K may be characterized in the following way:

$$B(y) = 183.5 + 98.8y - 40.6y^{2}$$

= $B_{y=1}(0.75938 + 0.40879y - 0.16817y^{2}) \pm 10.0$ GPa. (1)

The data from [8-10,13,15-18] on shear modulus *G* for different compositions of carbide TiC_y are presented in Fig. 2. Deviations of titanium carbide from the stoichiometric composition lead to nonlinear changes in *G*: the shear modulus first increases in the transition from TiC_{1.0} to ~ TiC_{0.92} and then decreases to a well-pronounced minimum in the region of TiC_{0.87}-TiC_{0.81}. As *y* drops to ~ 0.78, modulus *G* increases slightly, but then decreases

Figure 1. Variation of bulk modulus *B* in the region of homogeneity of disordered cubic titanium carbide TiC_y at 300 K: $\blacksquare - [7], \bullet - [8], \blacklozenge - [9], \blacktriangle - [10], \blacktriangledown - [11], \bigtriangleup - [12], \times - [13], \circ - [14]$. Approximating dependence B(y) is represented by the solid curve.

Figure 2. Dependence of shear modulus *G* on the composition of disordered cubic titanium carbide TiC_y at a temperature of 300 K: • $- [8], \blacklozenge - [9], \blacktriangle - [10], \times - [13], \blacktriangledown - [15], \Box - [16], \bigtriangleup - [17], \circ - [18]$. Approximating dependence *G*(*y*) is represented by the solid curve.

monotonically as y drops further to ~ 0.55. According to the results of the approximating calculation, the shear modulus of stoichiometric carbide TiC_{1.00} is $G_{y=1} = 187.2$ GPa. Taking this result and the observed G minimum into account, we may present dependence G(y) of the shear modulus on carbon content y of carbide TiC_y at 300 K in the following form:

$$G(y) = G_{y=1} \left[(-11.03975 + 25.74769y - 13.70794y^2) \times f_H(y - y_b) + (-0.82182 + 4.41716y - 2.76328y^2) \times f_H(y - y_b) \right] \pm 10.0 \,\text{GPa},$$
(2)

where

$$f_{\mathrm{H}}(y - y_b) = \begin{cases} 1, & \text{if } y \ge y_b \\ 0, & \text{if } y < y_b \end{cases}$$

is the Heaviside step function with $y_b = 0.84$.

The bulk and shear moduli of isotropic cubic crystals are related to the elastic stiffness constants in the following way: $B = (c_{11}+2c_{12})/3$ and $G = c_{44}$ [35]. We may take it as a first approximation that dependences B(y) and G(y)of single-crystal titanium carbide TiC_y on relative carbon content y have the same shape as quantitative dependences B(y) (1) and G(y) (2) derived from the experimental data [7–18]. In other words,

$$(c_{11} + 2c_{12})/3 \sim B_{y=1}(0.75938 + 0.40879y - 0.16817y^2)$$

and

$$\begin{split} c_{44} &\sim G_{y=1} \big[(-11.03975 + 25.74769y - 13.70794y^2) \\ &\times f_{\rm H}(y-y_b) + (-0.82182 + 4.41716y - 2.76328y^2) \\ &\times f_{\rm H}(y-y_b) \big]. \end{split}$$

Elastic stiffness constants c_{ij} (GPa), elastic compliance constants s_{ij} (Pa⁻¹), and elastic anisotropy criterion A_{an} for titanium carbide TiC_y with varying carbon content y

у	<i>c</i> ₁₁	C ₁₂	C 44	<i>s</i> ₁₁	<i>s</i> ₁₂	<i>S</i> 44	A_{an}
0.50	478.4	106.0	127.4	$2.273 \cdot 10^{-12}$	$-0.412 \cdot 10^{-12}$	$7.852 \cdot 10^{-12}$	0.684
0.55	484.4	107.3	141.2	$2.245 \cdot 10^{-12}$	$-0.407 \cdot 10^{-12}$	$7.081 \cdot 10^{-12}$	0.749
0.60	490.0	108.6	152.6	$2.219 \cdot 10^{-12}$	$-0.403 \cdot 10^{-12}$	$6.555 \cdot 10^{-12}$	0.800
0.65	495.1	109.7	161.4	$2.196 \cdot 10^{-12}$	$-0.398 \cdot 10^{-12}$	$6.197 \cdot 10^{-12}$	0.837
0.70	499.9	110.8	167.7	$2.175 \cdot 10^{-12}$	$-0.395 \cdot 10^{-12}$	$5.964 \cdot 10^{-12}$	0.862
0.75	504.1	111.7	171.4	$2.157 \cdot 10^{-12}$	$-0.391 \cdot 10^{-12}$	$5.834 \cdot 10^{-12}$	0.874
0.80	508.0	112.6	172.6	$2.141 \cdot 10^{-12}$	$-0.388 \cdot 10^{-12}$	$5.792 \cdot 10^{-12}$	0.873
0.85	511.4	113.3	172.3	$2.126 \cdot 10^{-12}$	$-0.386 \cdot 10^{-12}$	$5.802 \cdot 10^{-12}$	0.866
0.90	514.4	114.0	188.4	$2.114 \cdot 10^{-12}$	$-0.383 \cdot 10^{-12}$	$5.307 \cdot 10^{-12}$	0.941
0.95	516.9	114.5	192.0	$2.104 \cdot 10^{-12}$	$-0.382 \cdot 10^{-12}$	$5.209 \cdot 10^{-12}$	0.954
1.00	519.0	115.0	183.0	$2.095 \cdot 10^{-12}$	$-0.380\cdot 10^{-12}$	$5.465 \cdot 10^{-12}$	0.906

According to [36], dependences $c_{11}(y)$ and $c_{12}(y)$ of the elastic constants on the composition of cubic carbides are identical. The theoretical values of $B_{\text{calc},y=1} = 249$ and $G_{\text{calc},y=1} = 190$ GPa moduli of stoichiometric titanium carbide calculated within GGA in [22] and $B_{\text{calc},y=1} = 250$ GPa are the closest to the experimental values of $B_{y=1} = 241.7$ and $G_{y=1} = 187.2$ GPa. Taking this and the introduced approximation into account, we may present dependences $c_{ij}(y)$ of the elastic constants on the composition of carbide TiC_y in the following form:

$$c_{11}(y) = c_{11}(y = 1)[0.75938 + 0.40879y - 0.16817y^{2}],$$
(3a)
$$c_{12}(y) = c_{12}(y = 1)[0.75938 + 0.40879y - 0.16817y^{2}],$$
(3b)

$$c_{44}(y) = c_{44}(y = 1)[(-11.03975 + 25.74769y - 13.70794y^2)f_{\rm H}(y - y_b) + (-0.82182 + 4.41716y - 2.76328y^2)f_{\rm H}(y - y_b)],$$
(3c)

$$f_{\mathrm{H}}(y - y_b) = \begin{cases} 1, & \text{if } y \ge y_b \\ 0, & \text{if } y < y_b \end{cases}$$

is the Heaviside step function with $y_b = 0.84$; $c_{11}(y=1) = 519$ GPa, $c_{12}(y=1) = 115$ GPa, and $c_{44}(y=1) = 183$ GPa [22].

Elastic stiffness constants c_{11}, c_{12}, c_{44} and elastic compliance constants s_{11}, s_{12}, s_{44} for cubic crystals are related in the following way: $s_{44} = 1/c_{44}$, $s_{11} = (c_{11} + c_{12})/[(c_{11} - c_{12})(c_{11} + 2c_{12})]$ and $s_{12} = -c_{12}/[(c_{11} - c_{12})(c_{11} + 2c_{12})]$ [35].

The estimates of elastic stiffness constants c_{ij} and components s_{ij} of the compliance tensor of titanium carbide TiC_y are presented in the table.

Young's modulus E_{hkl} and Poisson's ratio μ_{hkl} of cubic crystals are anisotropic and depend on crystallographic direction [hkl]. These elastic characteristics are expressed

Physics of the Solid State, 2022, Vol. 64, No. 13

in terms of components s_{11} , s_{12} , and s_{44} of the compliance tensor as [37]

$$E_{hkl} = \frac{1}{s_{11} - 2(s_{11} - s_{12} - \frac{1}{2}s_{44})\Gamma},$$
(4)

$$u_{hkl} = -\frac{s_{12} + (s_{11} - s_{12} - \frac{1}{2}s_{44})\Gamma}{s_{11} - 2(s_{11} - s_{12} - \frac{1}{2}s_{44})\Gamma},$$
(5)

where

$$\Gamma = \frac{h^2k^2 + h^2l^2 + k^2l^2}{(h^2 + k^2 + l^2)^2}$$

is the anisotropy factor of cubic crystals.

Taking Eqs. (4) and (5) into account, we derive the following expressions for shear G_{hkl} and bulk *B* moduli:

$$G_{hkl} = \frac{1}{2s_{11} - 2s_{12} - 6(s_{112} - s_{12} - s_{44}/2)\Gamma},$$
 (6)

$$B = 1/[3(s_{11} + 2s_{12})].$$
(7)

It follows from Eq. (7) that bulk modulus B of cubic crystals does not depend on direction [hkl] and is isotropic.

The availability of data on elastic constants c₁₁, c₁₂, c₄₄, and s_{11}, s_{12}, s_{44} of carbide TiC_v with different degrees of defectiveness of the carbon sublattice (see the table) provided an opportunity to determine the distributions of elastic properties of single-crystal cubic carbide TiCy as functions of direction [hkl] and relative carbon content y. Fig. 3 shows the calculated distributions of Young's modulus E, shear modulus G, and Poisson's ratio μ of cubic carbide TiC_v. The distributions of Young's modulus E_{hkl} in plane (100) are presented for carbides TiC_y with y = 0.5, 0.6, 0.7, 0.8, and 1.0 (see Fig. 3). The distributions of Young's modulus E_{hkl} in planes (010) and (001) have the same shape. Young's modulus E_{hk0} of carbide TiC_{1.0} in plane (100) varies from ~ 449.7 to $\sim 477.3\,\text{GPa},$ while the Young's modulus of nonstoichiometric carbide $TiC_{0.5}$ with a defect carbon sublattice containing 50% of vacancies varies from \sim 345.7 to $\sim 439.9 \,\text{GPa}$ in the same plane. The maximum value of shear modulus G_{hk0} increases slightly from ~ 186.2

Figure 3. Dependences of Young's modulus *E*, shear modulus *G*, and Poisson's ratio μ on crystallographic direction [*hkl*] in plane (100) of cubic carbide TiC_y with relative carbon content *y* varying from 0.5 to 1.0.

Figure 4. Distributions of shear modulus G_{hkl} with crystallographic direction [hkl] in planes (a) (100), (b) (110), and (c) (111) of cubic carbide TiC_y with different carbon content y.

to ~ 202.0 GPa in the transition from nonstoichiometric carbide TiC_{0.5} to stoichiometric TiC_{1.0}. The increased defectiveness of the carbon sublattice of titanium carbide translates into an increased Poisson's ratio μ : in plane (100), the maximum value of μ of stoichiometric and nonstoichiometric carbides TiC_{1.0} and TiC_{0.5} is ~ 0.200 and \cong 0.250, respectively (see Fig. 3). Bulk modulus *B* of cubic titanium carbide TiC_y is isotropic and depends only on carbon content *y*: the value of *B* varies from ~ 230.1 GPa for TiC_{0.5} to ~ 249.7 GPa for stoichiometric TiC_{1.0}.

Fig. 4 shows the calculated dependences of shear modulus G_{hkl} of carbide TiC_y on crystallographic direction [*hkl*]. The distributions of shear modulus *G* in planes (100), (110), and (111) are presented for carbides TiC_y with y = 0.5, 0.7, and 1.0. The lowest G_{hkl} value for carbides TiC_y is found in plane (111). Shear modulus G_{hkl} in plane (111) is almost direction-independent and varies only slightly from ~ 184 to ~ 187 GPa for TiC_{1.0} and from ~ 130 to ~ 138 GPa for TiC_{0.5} (Fig. 4, *c*).

Simple criterion $A_{an} = 2c_{44}/(c_{11} - c_{12})$ was proposed in [38] as a variable to be used to characterize quantitatively the anisotropy of elastic properties of cubic crystals. The value of A_{an} for isotropic cubic crystals is 1. According to [38], the anisotropy of elastic properties grows stronger as the value of A_{an} deviates further from 1. The calculated values of A_{an} (see the table) demonstrate that the variation of the composition of titanium carbide from a nearstoichiometric composition TiC_{1.0-0.95} to carbide TiC_{0.50} with the highest defectiveness of the carbon sublattice coincides with a reduction in A_{an} , which drops from $\sim 0.91-0.95$ to $\sim 0.68.$ Thus, the anisotropy of the elastic properties of disordered titanium carbide grows stronger as the defectiveness of its carbon sublattice increases.

Using the obtained data on elastic constants c_{ij} and s_{ij} of disordered cubic titanium carbide TiC_y with different relative carbon content y, one may determine the Debye temperatures and the lattice (phonon) heat capacities of various compositions of carbide TiC_y.

According to the Voigt–Reuss–Hill averaging method [39], bulk moduli B and shear moduli G are related to the elastic constants in the following way:

$$B_{\rm V} = \left[c_{11} + c_{22} + c_{33} + 2(c_{12} + c_{13} + c_{23})\right]/9, \quad (8a)$$

$$B_{\rm R} = 1/[s_{11} + s_{22} + s_{33} + 2(s_{12} + s_{13} + s_{23})], \qquad (8b)$$

$$G_{\rm V} = [c_{11} + c_{22} + c_{33} + 3(c_{44} + c_{55} + c_{66}) - (c_{12} + c_{13} + c_{23})]/15,$$
(8c)

 $G_{\rm R} = 15/[4(s_{11} + s_{22} + s_{33}) - 4(s_{12} + s_{13} + s_{23})]$

$$+3(s_{44}+s_{55}+s_{66})],$$
 (8d)

while the average values of isotropic moduli are defined as follows:

$$B = (B_{\rm V} + B_{\rm R})/2, \quad G = (G_{\rm V} + G_{\rm R})/2.$$
 (9)

If density ρ is known, one may calculate longitudinal v_L , transverse v_t , and mean v_m velocities of propagation of elastic oscillations (sound velocities) [40,41] using isotropic moduli *B* and *G* or carbide TiC_v:

$$v_{\rm L} = \sqrt{(3B + 4G)/3\rho}, \quad v_t = \sqrt{G/\rho},$$
$$v_m = \left[\frac{1}{3}\left(\frac{2}{v_t^3} + \frac{1}{v_{\rm L}^3}\right)\right]^{-1/3}.$$
(10)

Having determined mean velocity v_m of propagation of elastic oscillations, one may estimate the Debye temperature [41]:

$$\theta_{\rm D} = \frac{h}{k_{\rm B}} \left(\frac{3nN_A\rho}{4\pi M}\right)^{1/3} \upsilon_m \,[{\rm K}]. \tag{11}$$

The obtained Debye temperature value provides an opportunity to calculate the heat capacity of any carbide TiC_y . With the contribution of optical vibrations neglected, the lattice Debye contribution to the heat capacity of carbide TiC_y takes the form

$$C_{\rm D} = (1+y) \, \frac{12\pi^4 k_{\rm B} N_A}{5} \left(\frac{T}{\theta_{\rm D}}\right)^3.$$
 (12)

Literature data on the heat capacity of TiC_y are limited to its estimate obtained in [42] based on the results of neutron diffraction measurements. It would be instructive if the authors of [42] continued their research by estimating the heat capacity of TiC_y based on the presented data on the elastic constants.

3. Conclusion

In essence, this study is the first to determine elastic constants c_{ij} and s_{ij} as functions of carbon content y in the region of homogeneity (TiC_{0.5}-TiC_{1.0}) of nonstoichiometric disordered cubic titanium carbide TiC_y. The analysis undertaken revealed that elastic stiffness constants c_{ij} of disordered carbide TiC_y decrease as the defectiveness of the carbon sublattice of titanium carbide increases. The increase in defectiveness of the carbon sublattice of carbide TiC_y is accompanied by an increase in anisotropy of its elastic properties.

Funding

This study was carried out within the framework of state assignment No. 0397-2019-0001 at the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences.

Conflict of interest

The author declares that he has no conflict of interest.

References

- A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides. Springer-Verlag, Berlin– Heidelberg–N. Y. (2001). 608 p.
- J.L. Murray. In: Binary Alloy Phase Diagrams / Ed. T.B. Massalski. Metals Park (Ohio, USA): ASM Intern. Publ. (1987).
 V. 1. P. 593–596.
- [3] V.N. Lipatnikov, A.I. Gusev, Uporyadochenie v karbidakh titana i vanadiya (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2000), 265 pp. (in Russian).
- [4] S.Y. Zhang. Mater. Sci. Eng. A 163, 1, 141 (1993).
- [5] J. Musil. Surf. Coat. Technol. **125**, *1*-3, 322 (2000).
- [6] C.W. Morton, D.J. Wills, K. Stjernberg. Int. J. Refr. Met. Hard Mater. 23, 4–6, 287 (2005).
- [7] A.P. Miodownik. Mater. Sci. Technol. 10, 3, 190 (1994).
- [8] R.H.J. Hannink, M.J. Murray. J. Mater. Sci. 9, 2, 223 (1974).
- [9] R. Chang, L.J. Graham. J. App. Phys. 37, 10, 3778 (1966).
- [10] J.J. Gilman, B.W. Roberts. J. Appl. Phys. 32, 7, 1405 (1961).
- [11] L. Pintschovius, W. Reichardt, B. Scheerer. J. Phys. C 11, 8, 1557 (1978).
- [12] I.N. Frantsevich, E.A. Zhurakovskiy, A.B. Lyashchenko. Izv. Akad. Nauk SSSR. Neorg. Mater. **3**, *1*, 8 (1967).
- [13] S.P. Dodd, M. Cankurtaran, B. James. J. Mater. Sci. 38, 6, 1107 (2003).
- [14] W.-X. Feng, S.-X. Cui, H.-Q. Hu, G.-Q. Zhang. Physica B 406, 19, 3631 (2011).
- [15] V.G. Bukatov, Issledovanie fiziko-mekhanicheskikh svoystv karbidov tugoplavkikh metallov i nekotorykh splavov na ikh osnove, Extended Abstract of Cand. Sci. Dissertation (MISiS, M., 1979), 21 pp. (in Russian).
- [16] Yu.G. Tkachenko, S.S. Ordan'yan, V.K. Yulyugin, D.Z. Yurchenko, G.S. Tabatadze, I.B. Panteleev, Poroshk. Metall., №6, 45 (1979) (in Russian).

- [17] S.V. Borisov, B.V. Mitrofanov, G.P. Shveikin, Izv. Akad. Nauk SSSR. Neorg. Mater. 15, 12, 2142 (1979).
- [18] Q. Yang, W. Lengauer, T. Koch, M. Scheerer, I. Smid. J. Alloys Comp. **309**, *1*-2, L5 (2000).
- [19] R. Ahuja, O. Eriksson, J.M. Wills, B. Johansson. Phys. Rev. B 53, 6, 3072 (1996).
- [20] W. Wolf, R. Podloucky, T. Antretter, F.D. Fischer. Phil. Mag. B 79, 6, 839 (1999).
- [21] A. Zaoui, B. Bouhafs, P. Ruterana. Mater. Chem. Phys. 91, 1, 108 (2005).
- [22] Y. Yang, H. Lu, C. Yu, J.M. Chen. J. Alloys Comp. 485, 1–2, 542 (2009).
- [23] Y.H. Li, W.F. Wang, B. Zhu, M. Xu, J. Zhu, Y.J. Hao, W.H. Li, X.J. Long. Sci. China: Phys. Mech. Astron. 54, 12, 2196 (2011).
- [24] X.-H. Wang, M. Zhang, L. Ruan, Z.-D. Zou. Trans. Nonferrous Met. Soc. China 21, 6, 1373 (2011).
- [25] V. Krasnenko, M.G. Brik. Solid State Sci. 14, 10, 1431 (2012).
- [26] Y.Z. Liu, Y.H. Jiang, R. Zhou, J. Feng. J. Alloys Comp. 582, 500 (2014).
- [27] Sh.-Q. Ma, Y. Liu, J.-W. Ye, B. Wang. Commun. Theor. Phys. 62, 6, 895 (2014).
- [28] D.Y. Dang, J.L. Fan, H.R. Gong. J. Appl. Phys. 116, 3, 033509 (2014).
- [29] A.R. Oganov, C.W. Glass. J. Chem. Phys. 124, 24, 244704 (2006).
- [30] G. Kresse, J. Furthmüller. Comput. Mater. Sci. 6, 1, 15 (1996).
- [31] G. Kresse, J. Furthmüller. Phys. Rev. B 54, 16, 11169 (1996).
- [32] G. Kresse, D. Joubert. Phys. Rev. B 59, 3, 1758 (1999).
- [33] D.A. Aksyonov, A.G. Lipnitskii, Yu.R. Kolobov. Comp. Mater. Sci. 65, 434 (2012).
- [34] C. Jiang, W. Jiang. Phys. Status Solidi 251, 3, 533 (2014).
- [35] R.E. Newnham. Properties of Materials. Anisotropy, Symmetry, Structure. Oxford Univ. Press, N.Y. (2005). 378 p.
- [36] A.A. Valeeva, A.I. Gusev. Intern. J. Refr. Met. Hard Mater. 95, 105435 (2021).
- [37] T. Gnäupel-Herold, P.C. Brand, H.J. Prask. J. Appl. Crystallogr. 31, 6, 929 (1998).
- [38] C. Zener. Elasticity and Anelasticity of Metals. University of Chicago, Chicago (1948). 170 p.
- [39] R. Hill. Proc. Phys. Soc. A 65, 5, 349 (1952).
- [40] E. Schreiber, O.L. Anderson, N. Soga. Elastic Constants and Their Measurements. McGraw-Hill, N.Y. (1973). 196 p.
- [41] O.L. Anderson. In: Lattice Dynamics / Physical Acoustics. Principles and Methods. V. III. Part B. Ch. 2 / Ed. W.P. Mason. Acad. Press, N.Y.–London (1965). P. 45.
- [42] I. Khidirov, V.V. Getmanskiy, A.S. Papiev, Sh.A. Makhmudov, Int. Sci. J. "Altern. Energy Ecol. (ISJAEE)", № 01-03 (285-287), 56-66 (2019).
 - DOI: 10.15518/isjaee.2019.01-03.056-066