Study of the FCC-BCC phase transition in an Au-Fe alloy
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
The properties of the disordered Au-Fe substitution alloy are studied based on the analytical method, which uses the paired interatomic potential of Mie-Lennard-Jones. The parameters of the interatomic potential for the FCC and BCC structures of Au and Fe are determined. Based on these parameters, the concentration dependences of the properties of the FCC and BCC structures of the Au-Fe alloy are calculated. Under normal conditions (i.e., pressure P=0 and temperature T=300 K), changes in the properties of the Au-Fe alloy at the structural phase transition of FCC-BCC are calculated. Using the RP-model of the nanocrystal, the displacement of the Cf concentration, at which the FCC-BCC phase transition occurs, due to a decrease in the size of the nanoparticle was calculated. It is shown that at an isochoric-isothermal decrease in the number of atoms (N) in an Au-Fe nanoparticle, the Cf value displace towards higher Fe concentrations. For a nanoparticle with a fixed number of atoms and a constant surface shape, the Cf value increases at an isochoric increase in temperature, and the Cf value decreases at an isothermal decrease in density. Calculations have shown that at N<59900 for the Au1-CFeC alloy at P=0, T≤300 K and at any iron concentration, the FCC structure is more stable than the BCC structure. Keywords: gold, iron, substitution alloy, phase transition, state equation, elastic modulus, thermal expansion, nanoparticle, surface energy.
  1. H. Okamoto, T.B. Massalski, L.J. Swartzendruber, P.A. Beck. Bull. Alloy Phase Diagrams 5, 6, 592 (1984). DOI: 10.1007/BF02868322
  2. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak. Binary Alloy Phase Diagrams (ASM, USA, 1992), V. 1-3
  3. J.A. Munoz, M.S. Lucas, L. Mauger, I. Halevy, J. Horwath, S.L. Semiatin, Y. Xiao, P. Chow, M.B. Stone, D.L. Abernathy, B. Fultz. Phys. Rev. B 87, 1, 014301 (2013). DOI: 10.1103/PhysRevB.87.014301
  4. I.A. Zhuravlev, S.V. Barabash, J.M. An, K.D. Belashchenko. Phys. Rev. B 96, 13, 134109 (2017). DOI: 10.1103/PhysRevB.96.134109
  5. A. Tymoczko, M. Kamp, O. Prymak, C. Rehbock, J. Jakobi, U. Schurmann, L. Kienle, S. Barcikowski. Nanoscale 10, 35, 16434 (2018). DOI: 10.1039/c8nr03962c
  6. M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). DOI: 10.1134/S1063783420120197
  7. M.N. Magomedov. Crystallography Rep. 62, 3, 480 (2017). DOI: 10.1134/S1063774517030142
  8. E.A. Moelwyn-Hughes. Phys. Chem. Pergamon Press, London (1961)
  9. M.N. Magomedov. Phys. Solid State 63, 2, 215 (2021). DOI: 10.1134/S1063783421020165
  10. M.N. Magomedov. Phys. Solid State 62, 7, 1126 (2020). DOI: 10.1134/S1063783420070136
  11. M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron Neutron Techniques 14, 6, 1208 (2020). DOI: 10.1134/S1027451020060105
  12. M.N. Magomedov. Technical Phys. 60, 11, 1619 (2015). DOI: 10.1134/S1063784215110195
  13. R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Pa nella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. 123, 4, 045701 (2019). DOI: 10.1103/PhysRevLett.123.045701
  14. S.S. Batsanov, A.S. Batsanov. Introduction to structural chemistry. Springer Science \& Business Media, Heidelberg (2012). 545 p. DOI: 10.1007/978-94-007-4771-5
  15. M.N. Magomedov. Phys. Solid State 60, 5, 981 (2018). DOI: 10.1134/S1063783418050190
  16. M.N. Magomedov. Phys. Solid State 61, 11, 2145 (2019). DOI: 10.1134/S1063783419110210
  17. F. Calvo, N. Combe, J. Morillo, M. Benoit. J. Phys. Chem. C 121, 8, 4680 (2017). DOI: 10.1021/acs.jpcc.6b12551
  18. M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vovcadlo. J. Appl. Crystallography 51, 2, 470 (2018). DOI: 10.1107/S1600576718002248
  19. M.M. Shukla, N.T. Padial. Rev. Brasil. Fi sica 3, 1, 39 (1973). http://sbfisica.org.br/bjp/download/v03/v03a03.pdf
  20. V.K. Kumikov, Kh.B. Khokonov. J. Appl. Phys. 54, 3, 1346 (1983). DOI: 10.1063/1.332209
  21. A. Patra, J.E. Bates, J. Sun, J.P. Perdew. Proc. Nat. Acad. Sci. 114, 44, E9188-E9196 (2017). DOI: 10.1073/pnas.1713320114
  22. J. Kangsabanik, R.K. Chouhan, D.D. Johnson, A. Alam. Phys. Rev. B 96, 10, 100201 (2017). DOI: 10.1103/PhysRevB.96.100201
  23. P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Sci. Rep. 7, 41863, 1 (2017). DOI: 10.1038/srep41863
  24. S.K. Saxena, G. Eriksson. J. Phys. Chem. Solids 84, 70 (2015). DOI: 10.1016/j.jpcs.2015.03.006
  25. Y. Nishihara, Y. Nakajima, A. Akashi, N. Tsujino, E. Takahashi, K.I. Funakoshi, Y. Higo. Am. Mineralogist 97, 8-9, 1417 (2012). DOI: 10.2138/am.2012.3958
  26. H. Chamati, N.I. Papanicolaou, Y. Mishin, D.A. Papaconstantopoulos. Surface Science 600, 9, 1793 (2006). DOI: 10.1016/j.susc.2006.02.010
  27. S.I. Novikova. Teplovoe rasshirenie tverdyh tel (Nauka, M., 1974), 294 p. (in Russian)
  28. S. Schonecker, X. Li, B. Johansson, S.K. Kwon, L. Vitos. Sci. Rep. 5, 14860 (2015). DOI: 10.1038/srep14860
  29. D.J. Dever. J. Appl. Phys. 43, 8, 3293 (1972). DOI: 10.1063/1.1661710
  30. V.E. Zinov'ev. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (The Thermophysical Proper ties of Metals at High Temperatures). Metallurgiya, Moscow (1989). 384 p
  31. L.J. Swartzendruber. Bull. Alloy Phase Diagrams 3, 2, 161 (1982). DOI: 10.1007/BF02892374
  32. A.M. Balagurov, I.A. Bobrikov, I.S. Golovin. JETP Lett. 107 (9), 558 (2018). DOI: 10.7868/S0370274X18090084
  33. P.A. Montano, J. Zhao, M. Ramanathan, G.K. Shenoy, W. Schulze. In: Small Particles and Inorganic Clusters / Ed. C. Chapon, M.F. Gillet, C.R. Henry. Springer, Berlin, Heidelberg (1989). DOI: 10.1007/978-3-642-74913-1_23
  34. P. Mukherjee, X. Jiang, Y.Q. Wu, M.J. Kramer, J.E. Shield. J. Phys. Chem. C 117, 45, 24071 (2013). DOI: 10.1021/jp409015y
  35. D. Amram, C.A. Schuh. Phys. Rev. Lett. 121, 14, 145503 (2018). DOI: 10.1103/PhysRevLett.121.145503
  36. C. Sow, G. Mettela, G.U. Kulkarni. Annu. Rev. Mater. Res. 50, 345 (2020). DOI: 10.1146/annurev-matsci-092519-103517

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru