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Study of the FCC-BCC phase transition in an Au-Fe alloy
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The properties of the disordered Au-Fe substitution alloy are studied based on the analytical method, which uses

the paired interatomic potential of Mie–Lennard-Jones. The parameters of the interatomic potential for the FCC and

BCC structures of Au and Fe are determined. Based on these parameters, the concentration dependences of the

properties of the FCC and BCC structures of the Au-Fe alloy are calculated. Under normal conditions (i.e., pressure
P = 0 and temperature T = 300K), changes in the properties of the Au-Fe alloy at the structural phase transition

of FCC-BCC are calculated. Using the RP-model of the nanocrystal, the displacement of the C f concentration, at

which the FCC-BCC phase transition occurs, due to a decrease in the size of the nanoparticle was calculated. It is

shown that at an isochoric-isothermal decrease in the number of atoms (N) in an Au-Fe nanoparticle, the C f value

displace towards higher Fe concentrations. For a nanoparticle with a fixed number of atoms and a constant surface

shape, the C f value increases at an isochoric increase in temperature, and the C f value decreases at an isothermal

decrease in density. Calculations have shown that at N < 59900 for the Au1−CFeC alloy at P = 0, T ≤ 300K and

at any iron concentration, the FCC structure is more stable than the BCC structure.
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1. Introduction

As was demonstrated in [1–5], substitution solid solution

Au1−CFeC , where C is the atomic concentration of iron,

forms two stable crystal structures at low temperatures

(T < 600K) and pressures (P ≈ 0):
at 0 < C < 68%, a Cu-type face-centered cubic (FCC,

Fm3m) structure is stable;

at 68 < C < 100%, a mixture of body-centered cubic

(BCC, Im3m) structures of the α-Fe and δ-Fe type is stable.

However, the changes in thermodynamic properties

of this alloy occurring in the structural FCC-BCC phase

transition have not been examined experimentally. This

is attributable to the fact that the metastable amorphous

structure manifests itself in experiments in the Au1−CFeC

alloy at 45 < C < 90% [1,2,4], thus making it difficult to

study the
”
pristine“ FCC-BCC transition. In view of this,

the boundary of stability of FCC and BCC phases (i.e.,
C f ) for the Au-Fe alloy is determined only tentatively, and

various estimates of C f have been published. Therefore,

no experimental data on changes in the thermodynamic

properties of the Au-Fe alloy occurring in the FCC-BCC

transition are available in literature even for normal

conditions (i.e., P ≈ 0 and T = 300K).
Theoretical studies of the FCC-BCC transition in the

Au-Fe alloy are made difficult by the fact that pure gold

does not form a BCC structure and iron at P ≈ 0 has a

FCC structure (γ-phase, austenite) only at high temper-

atures (T > 1185K). This gives rise to ambiguity in the

determination of parameters of the interatomic interaction

for these phases of pure metals and hinders the theoretical

study of the FCC-BCC transition in their substitution alloy.

We have examined the properties of substitution solid so-

lution Au1−CFeC with the FCC structure in [6] via analytical
calculations. In the present study, the mathematical method

from [6] is used to study the properties of this alloy both

in the BCC phase and in the FCC-BCC phase transition. It

is demonstrated that iron is central to this phase transition.

The emergence of the metastable amorphous phase in the

region of phase transition is explained. In addition, the

analytical RP model of a nanocrystal from [6,7] was used

to examine changes in the parameters of the FCC-BCC

transition induced by a reduction in the size of nanoparticles

of the Au-Fe alloy.

2. Study of the properties of Au and Fe
crystals in the FCC and BCC phases

In order to calculate the lattice properties of a single-

component crystal, we present the pairwise interatomic in-

teraction in the form of the Mie–Lennard-Jones potential [8]:

ϕ(r) =
D

(b − a)

[

a

(

ro
r

)b

− b

(

ro
r

)a]

, (1)

where D and ro are the depth and the coordinate of the po-

tential minimum and b > a > 1 are numerical parameters.
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The parameters of interatomic potential (1) for

Au (atomic mass m = 196.967 a.m.u.) and Fe

(m = 55.847 a.m.u.) should be determined prior to applying

the method from [6] in calculations of the properties of the

Au-Fe binary alloy. In addition, one needs to determine

the parameters of interatomic potential (1) for Au and Fe

with both FCC (where the first coordination number and

the packing coefficient are kn(∞) = 12 and k p = 0.7405)
and BCC (kn(∞) = 8 and k p = 0.6802) crystal structures

in order to calculate the properties of the Au-Fe alloy in

FCC and BCC phases. For different crystal structures of

pure metal, the parameters of the potential of the pairwise

interatomic interaction will be different. This is attributable

to the redistribution of the electron density over pairwise

interatomic bonds that occurs when the crystal structure

changes [9].
The parameters of potential (1) for FCC Au were

determined in [10,11] and used in [6] to calculate the

properties of the FCC Au-Fe alloy. The parameters of

potential (1) for FCC Fe were determined in [9] in the study

of the FCC-BCC phase transition in iron. The parameters of

potential (1) for a mixture of BCC α-Fe and δ-Fe structures

were determined and tested in [12].
Since Au does not form a BCC structure under normal

conditions [13], the parameters of potential (1) for this

modification of gold were estimated in the following way.

The empirical relation between the interatomic distance and

the packing index of a crystal with a cubic structure was

used to determine ro. While packing index k p in the course

of polymorphic transformations increases in the following

sequence [14, p. 288]:

k p = 0.3401 (A4= diamond) → 0.5236 (A5= scp)

→ 0.6802 (A2=BCC) → 0.7405 (A1= fcc),

the interatomic bond length increases in the sequence

1.02 → 1.09 → 1.11 → 1.14.

Thus, the distance between the centers of the nearest-

neighbor atoms in transition from the FCC structure

to BCC may be estimated using the following re-

lation: ro(fcc)/ro(BCC) = 1.14/1.11 = 1.027. Since

ro(fcc)/[1010 m] = 2.8751 for FCC Au [6,10,11], we find

the following for BCC Au: ro(BCC) = 2.7994 [10−10 m].
The power parameters of potential (1) for BCC Au were

taken equal to those for FCC Au. Potential depth D (bcc-
Au) was determined by fitting to the point of intersection of

specific (per atom) thermodynamic potentials at T = 10K

and R = 1 for the FCC and BCC phases of the Au1−CFeC

alloy with iron concentration C f = 0.68. Here, R = ro/c is

the relative linear density of the crystal, c = (6k pν/π)1/3 is

the distance between the centers of the nearest-neighbor

atoms, ν = V/N is the specific volume, and V and N are

the volume and the number of atoms in the crystal. The

obtained intersection of the thermodynamic potentials is

shown in Fig. 1, where kB is the Boltzmann constant.
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Figure 1. Concentration dependences of the specific ther-

modynamic potentials for the FCC (solid curve) and BCC

(dashed curve) structures of the Au-Fe alloy at T = 10K and

R = 1. Intersection of the thermodynamic potentials for the FCC

and BCC phases at C f = 0.68 is indicated with an arrow (at
D(bcc-Au)/kB = 11101K).

The
”
average atom“ method [6,15,16] was used to

calculate four parameters of potential (1) for the binary

AB-type alloy. Substitution solid solution A1−CBC with NA

and NB atoms with different atomic masses mA and mB is

modeled in this method by an isostructural virtual crystal

with N = NA + NB identical
”
average“ atoms. Mass m(C)

of the
”
average“ atom of this virtual material depends on

the solution concentration (C = NB/N) and is calculated as

the harmonic mean of the masses of atoms constituting the

alloy:

m(C) =

(

PA

mA

+
PB

mB

)

−1

. (2)

Functions PA and PB = 1− PA found in Eq. (2) are

the geometric probabilities of finding atoms A and B in

the substitution solid solution. They are defined as the

probabilities that a random point placed on a line with a

length of (1−C)roA + CroB ends up within sections roA
and roB, respectively:

PA(C) =
(1−C)roA

(1−C)roA + CroB
,

PB(C) =
(1−C)roB

(1−C)roA + CroB
. (3)

The following expression was obtained for the average

value of any one of the four H parameters of pairwise inter-

atomic Mie–Lennard-Jones potential (1) of alloy AB [15,16]:

H(A1−CBC) = P2
AHA + P2

BHB + 2PAPBHAB, (4)

where HAB is the parameter of interatomic potential (1) for

a lattice in which the probabilities of finding atoms are the

same for both atom types (P i = 0.5) with the relaxation of
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this lattice to the thermodynamic potential minimum taken

into account [15]:

roAB =

(

r3oA + CNr3oB
1 + CN

)1/3

, DAB = (DADB)1/2,

bAB = (bA + bB)/2, aAB = (aA + aB)/2. (5)

Here, parameter CN , which reflects the difference in

compression moduli B i of crystals of pure components for

the mixed lattice in which atoms of both types are found

with the same probability, takes the form

CN =
BB

BA

(

νoA

νoB

)

=
BB

BA

(

roA
roB

)3

. (6)

Thus, mass (2) of the
”
average“ atom in the

”
average

atom“ method and the parameters of the potential from

Eqs. (4) and (5) depend on concentration C and the

parameters of potential (1) for pure single-component

crystals. This method was used successfully to calculate the

properties of substitution solid solutions FCC-Au-Fe in [6]
and Si-Ge in [15,16].
In the present case, since experimental data on the elastic

modulus of BCC Au are lacking, parameter CN from Eq. (6)
for all Au and Fe phases was derived from the relation that

follows from the formula for the elastic modulus at P = 0,

T = 0K, and R = 1:

CN =
BB

BA

νA

νB
∼=

(knDab)B
(knDab)A

(

νoA

νoB

)2

=
(Dab)B
(Dab)A

(

roA
roB

)6

. (7)

Thus, the FCC-BCC phase transition in the Au-Fe

alloy was modeled using the parameters of the pairwise

interatomic Mie–Lennard-Jones interaction potential listed

in Table 1.

The lattice parameter (l) is related to the dis-

tance between the centers of the nearest-neighbor

atoms in the following way: l(fcc) = 21/2ro(fcc) and

l(BCC) = (2/31/2)ro(BCC). Using the data from Table 1,

we find

l(fcc-Au) = 4.0660, l(fcc-Fe) = 3.5927 [10−10 m],

l(bcc-Au) = 3.2325, l(bcc-Fe) = 2.8608 [10−10 m].

These values of the lattice parameter agree well with

the values determined theoretically for the FCC and BCC

phases of Au and Fe in [17, Fig. 1]:

l(fcc-Au) = 4.1−4.2, l(fcc-Fe) = 3.42 − 3.50 [10−10 m],

l(bcc-Au)=3.25−3.32, l(bcc-Fe)=2.79−2.85 [10−10 m].

In addition, our values of l agree better with the

experimental data for FCC Au and the FCC and BCC

phases of Fe from [1]:

l(fcc-Au) = 4.0784, l(fcc-Fe) = 3.6468,

l(bcc-Fe) = 2.8665 [10−10 m].

Table 1. Parameters of pairwise interatomic Mie–Lennard-Jones
interaction potential (1) for the FCC and BCC phases of Au and Fe

Crystal ro, 10
−10 m D/kB K b a Reference

fcc-Au 2.8751 74-19.160 16.05 2.80 [6,10,11]
bcc-Au 2.7994 11101.0 −”− −”−

fcc-γ-Fe 2.5404 8374.353 8.37 3.09 [9]
bcc-α-Fe 2.4775 12576.70 8.26 2.95 [12]

The results of calculations performed using the
”
average

atom“ method [6,7] revealed that the point of intersection

between the thermodynamic potentials of the FCC and BCC

phases of Au1−CFeC shifts slightly toward higher iron con-

centrations with isobaric (P = 0) increase in temperature.

The following was obtained at T = 300K: C f = 0.684 at

R = 1 and C f = 0.683 at R = 0.9958 (this corresponds to

P = 0).
Table 2 presents the properties of macrocrystals of Au

and Fe in the FCC and BCC phases at T = 300K and

P = 0 calculated using the parameters of potential (1) from

Table 1. The following notation is introduced in Table 2:

αp = (∂ lnV/∂T )P is the isobaric volumetric coefficient of

thermal expansion, Cν and C p = Cν(1 + γαpT ) are the

isochoric and isobaric heat capacities, s is the specific

(per atom) crystal entropy, µp is the Poisson’s ratio, σ is

the specific (per unit area) surface energy of face (100)
of the crystal, σ ′(T )ν and σ ′(T )P are the isochoric and

isobaric temperature derivatives of function σ , and 1p is

the isothermal logarithmic area (or density) derivative of

function σ .

To put this in context, we present experimental data on

the properties of FCC Au, FCC Fe, and BCC Fe crystals

taken from literature:

for FCC Au:

2/[K] = 165−170 [18], 162.4± 2 [19];
γ = 2.95−3.215 [18];
BT/[GPa] = 167.5−180.5 [18];
B ′(P) = 9.58± 0.08 [18];
αp/[10

−6 K−1] = 42−42.8 [18];

σ (100)/[10−3 J/m2] = 1175−1850 [20], 1510± 160 [21];
µp = 0.42 [22];

for FCC-γ-Fe (austenite, at T > 1200K):
2/[K] = 222.5 [23], 250 [24]; γ = 2.203 [23], 2.0 [24];
BT/[GPa] = 146.2 [23], 140 [24], 88.9± 5.1 [25];
B ′(P) = 4.67 [23], 8 [24], 8.9± 0.7 [25];
σ (100)/[10−3 J/m2] = 1950−2500 [20], (2265) [26];

for bcc-α-Fe (ferrite):
2/[K] = 472.7 ± 6 [19], 303.0 [23], 300 [24];
γ = 1.736 [23], 1.55 [24];
BT/[GPa] = 164.0 [23], 170 [24];
B ′(P) = 5.50 [23], 6.2 [24];
αp/[10

−6 K−1] = 33−39 [27];

σ (100)/[10−3 J/m2] = 2360, (2179-2463) [26],
2400-2500 [28];
µp = 0.32 [29;30, p. 313].
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Table 2. Calculated properties of the FCC and BCC phases of Au and Fe at P = 0 and T = 300K

Property [unit of measurement] fcc-Au bcc-Au fcc-Fe bcc-Fe

R = ro/c — relative linear density 0.995699 0.995699 0.996036 0.995857

V = [πN/(6k p)]c3 [cm3/mol] 10.252 10.302 7.0649 7.1378

c [10−10 m] 2.8875 2.8115 2.5505 2.4878

l — lattice parameter [10−10 m] 4.0835 3.2464 3.6069 2.8727

2 — Debye temperature [K] 198.043 203.130 404.941 399.514

γ = −(∂ ln2/∂ lnV )T — Gruneisen parameter 3.0008 3.0006 1.7205 1.7023

q · 103 = [(∂ ln γ/∂ lnV )T ] · 103 7.5662 7.7811 7.9065 7.7075

z = −(∂ ln q/∂ lnV )T 3.0158 3.0161 1.7361 1.7176

BT = −ν(∂P/∂ν)T — elastic modulus [GPa] 166.379 165.176 162.835 151.885

B ′(P) = (∂BT/∂P)
1)
T 8.3501 8.3496 5.8534 5.7695

αp = γCν/(BTV ) [10−6 K−1] 42.997 43.050 34.275 36.068

αp · BT = (∂P/∂T )ν = (∂s/∂ν)T [10−3 GPa/K] 7.1539 7.1109 5.5811 5.47811

Cν/(NkB) — isochoric heat capacity 2.9395 2.9364 2.7564 2.7626

C p/(NkB) = [Cν/(NkB)](1 + γαpT ) 3.0532 3.0501 2.8052 2.8135

s/kB — normalized specific entropy 5.1394 5.0649 3.0881 3.1253

2′(P) = (∂2/∂P)T [K/GPa]1) 3.5708 3.6895 4.2767 4.4782

C′

ν (P)/(NkB) [10−3/GPa]1) −2.1343 −2.2947 −4.8746 −5.0693

α′

p(P) = (∂αp/∂P)T [10−6/(K·GPa)]1) −1.9318 −1.9500 −1.0836 −1.2001

C′

p(P)/(NkB) [10−3/GPa]1) −7.3343 −7.5425 −6.5048 −6.8582

σ (100) — surface energy [10−3 J/m2] 1531.38 1522.54 2217.38 2204.98

Xsc · 10
3 = 103 · σ (100)/(c · BT ) 31.8757 32.7856 53.3909 58.3544

µp — Poisson’s ratio 0.4274 0.4294 0.3682 0.3768

σ ′(T )ν = (∂σ/∂T )ν [10−6 J/(m2K)] −50.979 −50.756 −61.147 −60.870

σ ′(T )P = (∂σ/∂T)P [10−6 J/(m2K)] −98.927 −98.482 −114.194 −116.345

σ ′(P)T = (∂σ/∂P)T [10−3 J/(m2GPa)]1) 6.6997 6.7086 9.5022 10.1238

1p = −(∂ ln σ/∂ ln6)T = −0.5(∂ ln σ/∂ ln c)T 1.09228 1.09219 1.04699 1.04632

No t e . 1) Calculated by differentiating the parameter numerically with respect to pressure along the isothermal dependence.

It can be seen that the results from Table 2 agree fairly

well with the experimental data. Note that our results

agree better with the experimental data than the results

obtained in [17, Table 1; 22, Table II] with the use of various

computer models.

3. Variation of the properties of the
Au-Fe alloy in the FCC-BCC phase
transition

The properties of the Au-Fe alloy were calculated us-

ing the
”
average atom“ method from [6,15,16] and the

parameters of the pairwise potential from Table 1. Figu-

res 2−7 present the isochoric-isothermal (R = ro/c = 1,

T = 300K) concentration dependences of the properties of

substitution solid solution Au1−CFeC for FCC (solid curves)
and BCC (dashed curves) structures. Dots connected by

thin solid lines in Figs. 2, 3, and 7 denote the results of

calculations [22] for the FCC Au-Fe alloy performed using

the density functional theory. Dashed straight lines represent

the linear dependences of the arithmetic mean over the Fe

concentration of the calculated properties of pure Au and

Fe crystals.

It can be seen from Figs. 2−7 that the concentration

dependences of the studied properties are nonlinear. De-

pendences 2(C) and C p(C) for the FCC and BCC phases

intersect at the following points:

2(C = 0.723) = 357.37K

and C p(C = 0.61)/(NkB ) = 2.897.

The calculations revealed that the thermodynamic po-

tentials of the FCC and BCC phases of substitution solid

solution Au1−CFeC at T = 300K and P = 0 intersect at

C f = 0.683. At this concentration, the mass of the
”
average

atom“ and the parameters of potential (1) for the FCC and

BCC structures of the Au-Fe alloy assume the values listed

in Table 3. The difference in masses of the
”
average atom“

for the FCC and BCC structures is attributable to the fact

that the geometric probabilities of finding an Au or Fe atom

Table 3. Values of the mass of the
”
average“ atom and the

parameters of pairwise interatomic interaction potential (1) for

Au1−CFeC at C f = 0.683 in the FCC and BCC phases

Crystal
m, ro, D/kB ,

b a
a.m.u. 10−10 m K

fcc-Au-Fe 74.3614 2.64963 8035.86 11.0389 2.9892

bcc-Au-Fe 74.3355 2.58475 12053.99 10.9643 2.8979
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in the substitution solid solution are used in the process of

averaging in (2).
The parameters from Table 3 and the method from [6]

were used to calculate the properties of the FCC

and BCC phases of the Au1−CFeC solid solution at

C f = 0.683, T = 300K, and P = 0. Table 4 lists

the obtained values and their relative variation (in %):
1X = [X(BCC) − X(fcc)]/X(fcc).
It can be seen from Table 4 that R, 2, γ, z , B ′(P), Cν , C p,

s , σ100), σ ′(T )ν , σ
′(T )P , and 1p remain almost unchanged
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Figure 2. Concentration dependences of the Debye temperature

for the FCC (solid curve) and BCC (dashed curve) structures

of the Au-Fe alloy. Dots denote the results from [22] for FCC

Au-Fe. The dashed straight line represents the linear dependence

of the arithmetic mean over the Fe concentration of the Debye

temperatures of pure FCC Au and Fe crystals. The dependences

for the FCC and BCC structures intersect at C = 0.723 and

2 = 357.37K.
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Figure 3. Concentration dependences of the elastic modulus

for the FCC (solid curve) and BCC (dashed curve) structures

of the Au-Fe alloy. Dots denote the results from [22] for FCC

Au-Fe. Dashed straight lines represent the linear dependences of

the arithmetic mean over the Fe concentration of the elastic moduli

of pure FCC and BCC Au and Fe crystals.
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structures of the Au-Fe alloy at R = 1 and T = 300K.
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heat capacity for the FCC (solid curve) and BCC (dashed
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represents the linear dependence of the arithmetic mean over the

Fe concentration of the normalized isobaric heat capacities of pure

FCC Au and Fe crystals. The dependences for the FCC and BCC

structures intersect at C = 0.61 and C p/(NkB) = 2.897.

in the process of the FCC-BCC transition in the Au-Fe alloy

at P = 0 and T = 300K. The other examined properties

vary within 1−7.6%, while the lattice parameter undergoes

the greatest change: 20%.

The relative volume variation in the FCC-BCC transition

in the Au-Fe alloy at P = 0 and T = 300K is the same

as the one in the γ−α transition in pure iron at P = 0

and T = 1184K [9,31,32]. This suggests that iron is central

to this transition in the alloy. However, the variations of

parameters γ , z , BT , B ′(P), αp, α
′

p(P), C′

ν(P), C′

p(P), Xsc ,

µp, and σ ′(P)T in this transition in the Au-Fe alloy are

much greater than the corresponding variations in the γ−α

transition in pure iron.
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Table 4. Calculated properties of the FCC and BCC structures of the Au1−CFeC alloy at C f = 0.683, T = 300K, and P = 0

Property [unit of measurement] fcc-Au-Fe bcc-Au-Fe 1X × 100

R = ro/c — relative linear density 0.99600 0.99588 −0.012

V = [πN/(6k p)]c3 [cm3/mol] 8.0169 8.10496 1.098

c [10−10 m] 2.6603 2.5955 −2.436

l — lattice parameter [10−10 m] 3.7622 2.9970 −20.339

2 — Debye temperature [K] 340.063 340.506 0.130

γ = −(∂ ln2/∂ lnV )T — Gruneisen parameter 2.1645 2.1521 −0.573

q · 103 = [(∂ ln γ/∂ lnV )T ] · 103 8.6904 8.6519 −0.443

z = −(∂ ln q/∂ lnV )T 2.1817 2.1693 −0.568

BT = −ν(∂P/∂ν)T — elastic modulus [GPa] 173.750 165.346 −4.837

B ′(P) = (∂BT /∂P)
1)
T 6.720 6.664 −0.833

αp = γCν/(BTV ) [10−6 K−1] 36.508 37.723 3.328

αp · BT = (∂P/∂T)ν = (∂s/∂ν)T [10−3 GPa/K] 6.343 6.237 −1.671

Cν/(NkB ) — isochoric heat capacity 2.82565 2.82522 −0.015

C p/(NkB) = [Cν/(NkB )](1 + γαpT ) 2.89264 2.89402 0.048

s/kB — normalized specific entropy 3.57574 3.57206 −0.103

2′(P) = (∂2/∂P)T [K/GPa]1) 4.2354 4.4327 4.658

C′

ν(P)/(NkB) [10−3/GPa]1) −4.1782 −4.3911 5.095

α′

p(P) = (∂αp/∂P)T [10−6/(K·GPa)]1) −1.2573 −1.3525 7.572

C′

p(P)/(NkB) [10−3/GPa]1) −6.5877 −6.9689 5.787

σ (100) — surface energy [10−3 J/m2] 1955.30 1941.13 −0.725

Xsc · 10
3 = 103 · σ (100)/(cBT ) 42.302 45.232 6.926

µp — Poisson’s ratio 0.3949 0.4006 1.443

σ ′(T )ν = (∂σ/∂T)ν [10−6 J/(m2K)] −57.650 −57.223 −0.741

σ ′(T )P = (∂σ/∂T)P [10−6 J/(m2K)] −108.168 −109.017 0.789

σ ′(P)T = (∂σ/∂P)T [10−3 J/(m2GPa)]1) 7.9617 8.3012 4.264

1p = −(∂ ln σ/∂ ln6)T = −0.5(∂ ln σ/∂ ln c)T 1.06156 1.06099 −0.054

No t e . 1) Calculated by differentiating the parameter numerically with respect to pressure along the isothermal dependence.
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Figure 6. Concentration dependences of the specific surface

energy of face (100) for the FCC (solid curve) and BCC (dashed
curve) structures of the Au-Fe alloy. The dashed straight line

represents the linear dependence of the arithmetic mean over the

Fe concentration of the specific surface energies of pure FCC Au

and Fe crystals.

It can be seen from Fig. 1 that the energy difference

between the FCC and BCC structures of the Au-Fe alloy

remains very small in a wide range of concentrations in the

vicinity of the FCC-BCC transition. This suggests that the

Au-Fe alloy is prone to the metastable coexistence of the

FCC and BCC structures in a wide range of concentrations
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Figure 7. Concentration dependences of the Poisson’s ratio for

the FCC (solid curve) and BCC (dashed curve) structures of the

Au-Fe alloy. Dots denote the results from [22] for FCC Au-Fe.

The dashed straight line represents the linear dependence of the

arithmetic mean over the Fe concentration of the Poisson’s ratios

of pure FCC Au and Fe crystals.
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in the vicinity of the FCC-BCC transition. This is what ac-

counts for the existence of the metastable X-ray amorphous

structure in the Au1−CFeC alloy at 45 < C < 90% [1,2,4].
The specific entropy decreases in the transition from the

FCC structure to BCC in the Au-Fe alloy. This is indicative

of absorption of the latent heat in this phase transition,

which occurs in much the same way as in the γ−α transition

in pure iron. At the same time, the relative variation of

entropy in the FCC-BCC transition in the Au-Fe alloy is an

order of magnitude smaller than the corresponding variation

in the γ−α transition in pure iron:

1s(Au-Fe)/kB = −0.00368,

1s(γ−α-Fe)/kB = −0.0746 [9], −0.083 [31]. (8)

The small difference between the specific entropies of the

FCC and BCC phases indicates that the Au-Fe alloy is prone

to amorphization in the course of the FCC-BCC transition.

Notably, it follows from (8) that the Au-Fe alloy is much

more prone to amorphization in the FCC-BCC transition

than pure Fe in the γ−α transition. The emergence of the

X-ray amorphous state of pure Fe in the γ−α transition was

observed experimentally in [32].

4. Variation of the parameters of the
FCC-BCC c phase transition induced
by a reduction in the size of
nanoparticles of the Au-Fe alloy

The properties of a nanoparticle of the Au-Fe alloy

with both FCC and BCC structures were calculated using

the method from [6,7] and the parameters of interatomic

potential (1) listed in Table 1. To preserve the axioms

of equilibrium thermodynamics, we assumed that the alloy

components are distributed evenly within the volume of a

nanoparticle and that density and concentration gradients

are lacking.

Table 5 presents the values of concentration C f at which

the thermodynamic potentials of the FCC and BCC phases

of the Au1−CFeC alloy intersect in a macrocrystal (N = ∞,

kn(fcc) = 12, kn(BCC) = 8) and a cubic nanoparticle with

N = 60000 atoms. The average first coordination numbers

for the FCC and BCC nanoparticle structures are

kn(fcc) = 11.756617, kn(BCC) = 7.828296.

It follows from Table 5 that the value of C f increases with

an isochoric-isothermal reduction in the number of atoms

in Au1−CFeC nanoparticles; i.e., the FCC-BCC transition

shifts toward higher iron concentrations. If the number of

atoms in a nanoparticle and the shape of its surface are

fixed, the value of C f increases with an isochoric increase

in temperature and decreases with an isothermal reduction

in density.

The results of calculations revealed that the thermo-

dynamic potentials of the FCC and BCC phases of the

Table 5. Variation of concentration C f (the concentration at

which the FCC-BCC transition occurs in the Au1−CFeC alloy) with
temperature and density for a macrocrystal and a nanocrystal of

60000 atoms

N T , K R = ro/c C f

∞ 10 1 0.680

300 1 0.684

300 0.9958 0.683

60000 10 1 0.970

10 0.9958 0.969

300 1 0.944

300 0.9958 0.943

Au-Fe alloy at P = 0 and T ≤ 300K cease to intersect

at N < 59900. In other words, the FCC structure of the

Au-Fe alloy at N < 59900 (i.e., with nanoparticle diameter

d < 150 · 10−10 m) is more stable than the BCC structure

at any concentration of iron. At high iron concentrations

(C > 0.9), relatively large (40000 < N < 59900) nanopar-

ticles of the Au-Fe alloy may maintain a metastable amor-

phous structure with a mixture of FCC and BCC structures;

however, the FCC structure becomes energetically favorable

as nanoparticles decrease in size.

Note that the variation of the nanoparticle structure

with size was observed experimentally for many single-

component materials and alloys [33–36]. For example,

it was found in [33] that the BCC structure of an iron

nanoparticle changes to the FCC one, which is stable

for macroscopic iron only at high temperatures, as the

nanoparticle decreases in size. It was demonstrated

experimentally in [34] that nanoparticles of the Au-Fe alloy

cease to undergo the structural phase transition to the BCC

phase below a certain size limit. It was also demonstrated

experimentally in [35] that the high-temperature FCC phase

of the Au-Fe alloy subjected to the FCC-BCC transition

has a stable small size that is smaller than the one

corresponding to the low-temperature BCC phase. The

authors of review [36] noted the experimental studies where

Au nanoparticles with stable crystal structures differing from

the FCC structure were synthesized.

5. Conclusion

The parameters of the pairwise interatomic Mie–Lennard-
Jones interaction potential for the FCC and BCC structures

of gold and iron were determined in a self-consistent

way. They were obtained by fitting the parameters of

the potential for BCC gold to the point of intersection of

the thermodynamic potentials at T = 10K and R = 1 for

the FCC and BCC phases of the disordered substitution

Au1−CFeC alloy with iron concentration C f = 0.68.
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The determined parameters of interatomic potential (1)
and the analytical method from [6,9] were used to calculate

the properties of the FCC and BCC phases of gold and

iron at P = 0 and T = 300K. The results agreed well with

experimental estimates, thus verifying the correctness of the

calculation method.

The concentration dependences of the properties of the

FCC and BCC phases of the Au-Fe alloy at R = 1 and

T = 300K were calculated. It was found that these

dependences are nonlinear and agree with the results

of calculations [22] for the FCC Au-Fe alloy performed

using the density functional theory. The emergence of

a metastable amorphous structure in a wide range of

concentrations in the vicinity of the FCC-BCC transition

in the Au-Fe alloy was explained.

The variation of the properties of the Au-Fe alloy in

the structural FCC-BCC phase transition at P = 0 and

T = 300K was calculated. It was found that the values

of R, 2, γ , z , B ′(P), Cν , C p, s , σ (100), σ ′(T )ν , σ
′(T )P ,

and 1p remain almost unchanged in the process of the

FCC-BCC transition. The lattice parameter undergoes the

greatest change, while the other examined properties vary

within 1−7.6%. This pattern of parameter variation in the

FCC-BCC transition allowed us to conclude that iron is

central to the phase transition in the Au-Fe alloy.

The shift of concentration C f , which corresponds to the

intersection of the thermodynamic potentials of the FCC and

BCC phases of the Au1−CFeC alloy, with a reduction in the

nanoparticle size was calculated. It was demonstrated that

the value of C f shifts toward higher iron concentrations with

an isochoric-isothermal reduction in the number of atoms in

Au-Fe nanoparticles.

If the number of atoms in a nanoparticle and the shape

of its surface are fixed, the value of C f increases with an

isochoric increase in temperature and decreases with an

isothermal reduction in density. The calculations revealed

that the FCC structure of a nanoparticle of the Au1−CFeC

alloy at P = 0, T ≤ 300K, and N < 59900 is more stable

than the BCC structure at any concentration of iron.
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