Physics of the Solid State
Volumes and Issues
Using of mechanical deformations to control for phase transformations in multilayer ferroelectric structures
Sidorkin A.S. 1, Darinskii B.M.1, Gagou Y.2, Saint-Gregoire P.3, Kalgin A.V.1,4, Nesterenko L.P.1
1Voronezh State University, Voronezh, Russia
2
3
4Voronezh State Technical University, Voronezh, Russia
Email: kalgin_alexandr@mail.ru

PDF
Based on the results of studies of the temperature dependences of dielectric constant, polarization and coercive field, the Curie points and the type of phase transition for three-layer ferroelectric structures barium titanate - strontium titanate SrTiO_3/BaTiO_3/SrTiO3 and lead titanate - strontium titanate SrTiO_3/PbTiO_3/SrTiO3 were determined. It is shown that in a multilayer with barium titanate there is a significant (about two hundred degrees) increase in the Curie temperature of the created structure compared to homogeneous barium titanate, and the type of ferroelectric phase transition changes from first order to second order. In a multilayer with lead titanate, the Curie point and the type of transition practically do not change in comparison with homogeneous lead titanate, which is associated primarily with the practical coincidence of the cell sizes of lead titanate and strontium titanate in the plane of contact. Keywords: ferroelectric superlattices, multilayer structures, permittivity, polarization, mechanical strains, phase transition, phase transition order, incompatibility strains.
  1. Physics of ferroelectrics: a modern perspective / Eds K.M. Rabe, C.G. Ahn, J.-M. Triscon. Springer, Berlin-Heidelberg (2007). 388 p
  2. J.F. Scott. Sci. 315, 5814, 954 (2007)
  3. M.J. Polking, A.P. Alivisatos, R. Ramesh. MRS Commun. 5, 1, 27 (2015)
  4. S. Das, Z. Hong, M. McCarter, P. Shafer, Y.-T. Shao, D.A. Muller, L.W. Martin, R. Ramesh. APL Materials 8, 12, 120902 (2020)
  5. M. Dawber, K. Rabe, J.F. Scott. Rev. Mod. Phys. 77, 4, 1083 (2005)
  6. T.M. Shaw, S. Trolier-McKinstry, P.C. McIntyre. Annu. Rev. Mater. Res. 30, 263 (2000)
  7. G. Rijnders, D.H.A. Blank. Nature 433, 7024, 369 (2005)
  8. D.G. Schlom. Annu. Rev. Mater. Res. 37, 589 (2007)
  9. J. Shen, Y.-Q. Ma. Phys. Rev. B 61, 21, 14279 (2000)
  10. M. Sepliarsky, S. Phillpot, D. Wolf, M.G. Stachiotti, R.L. Migoni. Phys. Rev. B 64, 6, 060101 (2001)
  11. S.M. Nakhmanson, K.M. Rabe, D. Vanderbilt. Phys. Rev. B 73, 6, 060101(R) (2006)
  12. Y. Ishibashi, M. Iwata. Ferroelectrics 354, 1, 8 (2007)
  13. A.S. Sidorkin, L.P. Nesterenko, Y. Gagou, P. Saint-Gregoire, N.G. Popravko, A.Yu. Pakhomov. Ferroelectrics 561, 1, 135 (2020)
  14. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev. Phys. Rev. Lett. 80, 9, 1988 (1998)
  15. B.M. Darinskii, A.S. Sidorkin, A.S. Sigov. Nanocomposites 7, 1, 154 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru