Physics of the Solid State
Volumes and Issues
Magnetic properties of bicomponent nanoparticles CuO-CuFe2O4, obtained by arc evaporation method
1, 1, 2, 2,3, Zdeshnev D.S.1,3
1Ioffe Institute, St. Petersburg, Russia
2
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: Ymasha@mail.ioffe.ru, victorsedov61@gmail.com, lisaevich.na@gmail.com, zdeshka@mail.ru

PDF
Bicomponent CuO-CuFe2O4 nanoparticles with a CuFe2O4 content of about 20% were obtained using the arc evaporation method. X-ray examination showed that the samples contained only CuO nanoparticles with a size of 54 nm and CuFe2O4 with a size of 32 nm. The temperature dependences of the magnetization of nanoparticles M(T) have a form characteristic of a superparamagnetic state with a blocking temperature above 400 K at H=100 Oe. The field dependences of the magnetization M(H) show high values of saturation magnetization at all temperatures studied. In low fields, the M(H) dependences have a hysteretic character, and at low temperatures the loop has features associated with different contributions to the magnetization from the central part of the bicomponent particle (CuFe2O4) and from the peripheral part adjacent to CuO. The synthesis method using an arc discharge makes it possible to effectively obtain bicomponent particles that are similar in size and with high magnetization values up to a temperature of 400 K. Keywords: bicomponent nanoparticles, arc evaporation, magnetization, hysteresis loop, superparamagnetism.
  1. A. Massoud-Sharifi, G.K. Kara, M. Rabbani. Proceed. 4th Int. Electronic Conf. on Water Sci. 48, 1, 17 (2020)
  2. X. Hu, Z. Zhu, Z. Li, L. Xie, Y. Wu, L. Zheng. Sensors. Actuators B: Chemica l264, 139 (2018)
  3. T.P. Sumangala, Y. Thimont, V. Baco-Carles, L. Presmanes, C. Bonningue, I. Pasquet, P. Tailhades, A. Barnabe. J. Alloys Compd. 695, 937 (2017)
  4. G. Narsinga Rao; Y.D. Yao, J.W. Chen. IEEE Trans. Magnetics 41, 10, 3409 (2005)
  5. A.A. Lepeshev, I.V. Karpov, A.V. Ushakov, D.A. Balaev, A.A. Krasikov, A.A. Dubrovskiy, D.A. Velikanov, M.I. Petrov. J. Supercond. Nov. Magn. 30, 4, 931 (2017)
  6. N. Masunga, O.K. Mmelesi, K.K. Kefeni, B.B. Mamba. J. Environ. Chem. Eng. 7, 3, 103179 (2019)
  7. M.M. Rashad, D.A. Rayan, A.A. Ramadan. J. Mater. Sci.: Mater. Electronics 24, 8, 2742 (2013)
  8. M.M. Rashad, S. Soltan, A.A. Ramadan, M.F. Bekheet, D.A. Rayan. Ceram. Int. 41, 9 Part B, 12237 (2015)
  9. Y.X. Gao, C.M. Zhu, S. Huang, Z.M. Tian, S.L. Yuan. J. Magn. Magn. Mater. 439, 384 (2017)
  10. I.V. Karpov, A.V. Ushakov, V.G. Demin, E.A. Goncharova, A.A. Shaihadinov. JOM 72, 11, 3952 (2020)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru