Synthesis of composite nanomaterials based on carbon nanotubes and titanium oxide by ion-beam modification
Knyazev E. V.
1,2, Nesov S. N.
1,2, Bolotov V. V.
1, Povoroznyuk S. N.
1,2, Ivlev K. E.
1, Matyushenko S. A.
11Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
2Omsk State Technical University, Omsk, Russia
Email: knyazevyegor@mail.ru
The paper studies the structure and chemical state of "carbon nanotube - titanium" oxide composites modified by ion irradiation. Scanning electron microscopy and transmission electron microscopy were used to investigate the changes in the morphology and structure of the composite after irradiation. X-ray photoelectron spectroscopy revealed changes in the chemical state of the samples, with the incorporation of nitrogen into the titanium structure. The conductivity of the composite structures was found to depend on the thickness of the titanium oxide layer and subsequent ion treatments. Keywords: ion irradiation, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy.
- Waris, M.S. Chaudhary, A.H. Anwer, S. Sultana, P.P. Ingole, S.A.A. Nami, M.Z. Khan. Energy \& Fuels 37, 24, 19433 (2023). https://doi.org/10.1021/acs.energyfuels.3c03213
- G. Cho, S. Azzouzi, G. Zucchi, B. Lebental. Sensors 22, 1, 218 (2022). https://doi.org/10.3390/s22010218
- S.K. Martha, S. Ghosh, V. Kiran Kumar, S. Biswas. Meet. Abstr. MA2019-01, 2, 141 (2019). https://doi.org/10.1149/MA2019-01/2/141
- K.G. Motora, C.-M. Wu, G.-Y. Chen, D.-H. Kuo. Int. J. Hydrogen Energy 120, 44 (2025). https://doi.org/10.1016/j.ijhydene.2025.03.309
- G.E. Yalovega, M. Brzhezinskaya, V.O. Dmitriev, V.A. Shmatko, I.V. Ershov, A.A. Ulyankina, D.V. Chernysheva, N.V. Smirnova. Nanomater. 14, 11, 947 (2024). https://doi.org/10.3390/nano14110947
- A. Krishna, E.T. Gecil, L.S. Aravinda, N. Sarath Kumar, K.N. Reddy, N. Balashanmugam, M.R. Sankar. Diamond. Related Mater. 109, 108029 (2020). https://doi.org/10.1016/j.diamond.2020.108029
- N. Cherenda, V.I. Shymanski, A.Y. Leivi, V.V. Uglov, A. Yalovetz, H.-W. Zhong, S.-J. Zhang, X.-Y. Le, G.E. Remnev, S.Y. Dai. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes 26, 1, 1 (2022). https://doi.org/10.1615/HighTempMatProc.2021042087
- A.S. Racz, P. Kun, Z. Kerner, Z. Fogarassy, M. Menyhard. ACS Appl. Nano Mater. 6, 5, 3816 (2023). https://doi.org/10.1021/acsanm.2c05505
- H. Khanduri, S.A. Khan, M.C. Dimri, J. Link, R. Stern, I. Sulania, D.K. Avasthi. Physica Scripta 96, 10, 105806 (2021). https://doi.org/10.1088/1402-4896/ac119b
- V.C.A. Ficca, M. Sbroscia, E. Stellino, I. Rago, F. Goto, I. Majumdar, G. Cavoto, F. Pandolfi, A. Calloni, A. Lucotti, G. Bussetti, E. Placidi. Adv. Funct. Mater. 35, 4, 2413308 (2025). https://doi.org/10.1002/adfm.202413308
- N. Kim, M.R. Raj, G. Lee. Nanotechnol. 31, 41, 415401 (2020). https://doi.org/10.1088/1361-6528/ab9fb6
- E.V. Knyazev, S.N. Nesov, V.V. Bolotov, D.V. Sokolov, S.N. Povoroznyuk, K.E. Ivlev, S.A. Matyushenko, E.V. Zhizhin, A.V. Koroleva. FTT 66, 12, 2173 (2024). (in Russian)
- E.V. Knyazev, V.V. Bolotov, K.E. Ivlev, S.N. Povoroznyuk, V.E. Kan, D.V. Sokolov. Phys. Solid State 61, 3, 433 (2019)
- X.D. Zheng, F. Ren, G.X. Cai, M.Q. Hong, X.H. Xiao, W. Wu, Y.C. Liu, W.Q. Li, J.J. Ying, C.Z. Jiang. J. Appl. Phys. 115, 18, 184306 (2014). https://doi.org/10.1063/1.4876120
- L. Bokobza, J.-L. Bruneel, M. Couzi. J. Carbon Res. 1, 1, 77 (2015). https://doi.org/10.3390/c1010077
- S.E. Rodil, A.C. Ferrari, J. Robertson, W.I. Milne. J. Appl. Phys. 89, 10, 5425 (2001). https://doi.org/10.1063/1.1365076
- T. Dikova, D.P. Hashim, N. Mintcheva. Mater. 17, 6, 1290 (2024). https://doi.org/10.3390/ma17061290
- Table of elements. Manganese. Manganese X-ray photoelectron spectra, manganese electron configuration, and other elemental information. Internet database. Thermo Fisher Scientific. https://www.thermofisher.com/ru/ru/home/materials-science/learning-center/periodic-table/transition-metal/manganese.html
- S. Eswara, J.-N. Audinot, B. El Adib, M. Guennou, T. Wirtz, P. Phillip. Beilstein J. Nanotechnol, 9, 1951 (2018). https://doi.org/10.3762/bjnano.9.186
- A. Di Crescenzo, V. Ettorre, A. Fontana. Beilstein J. Nanotechnol. 5, 1675 (2014). https://doi.org/10.3762/bjnano.5.178
- S. Tougaard. Surf Interface Anal 50, 6, 657 (2018). https://doi.org/10.1002/sia.6456
- A.K. Gerasimova, V.A. Voronkovskii, D.A. Kalmykov, V.Sh. Aliev, V.A. Volodin, M.A. Dem'yanenko. Optika i spektroskopiya 133, 1, (in Russian). 57 (2025)
- P.V. Orlov, D.N. Korotaev, S.N. Nesov, P.M. Korusenko, S.N. Povoroznyuk. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condens. Matter. Interphases 20, 4, 630 (2018). https://doi.org/10.17308/kcmf.2018.20/638
- S. Wang, F. Wang, Z. Su, X. Wang, Y. Han, L. Zhang, J. Xiang, W. Du, N. Tang. Catalysts 9, 5, 439 (2019). https://doi.org/10.3390/catal9050439
- S.N. Nesov, P.M. Korusenko, V.V. Bolotov, S.N. Povoroznyuk, K.E. Ivlev. Kondensirovannye Sredy I Mezhfaznye Granitsy=Condens. Matter. Interphases 20, 2, 237 (2018). https://doi.org/10.17308/kcmf.2018.20/515
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.