Physics of the Solid State
Volumes and Issues
Homogeneous Nucleation and Diffusional Growth of a Nanoparticle under Ultraso Irradiation
Rekhviashvili S.Sh.1
1Institute of Applied Mathematics and Automatization, Kabardino-Balkar Scientific Center, Russian Academy of Sciences, Nalchik, Russia
Email: rsergo@mail.ru

PDF
A theoretical model is proposed for the homogeneous nucleation and growth of an individual nucleus (nanoparticle) in a liquid-phase medium under ultrasonic excitation. The model combines a thermodynamic approach, which enables calculation of the nucleation work and the critical radius of the nucleus in a non-stationary pressure field, with a kinetic description of diffusion-driven mass transfer and the growth of an individual nanoparticle under acoustic oscillations. The proposed approach establishes a relationship between the intensity of ultrasonic exposure and the characteristics of nanoparticle formation and can also serve as a basis for constructing the statistical size distribution of nanoparticles. Keywords: homogeneous nucleation, ultrasonic treatment, critical nucleus radius, diffusion growth, acoustic oscillations, nanoparticle, thermodynamic model, kinetic mode.
  1. K.S. Suslick, G.J. Price. Annu. Rev. Mater. Sci. 29, 295 (1999). https://doi.org/10.1146/annurev.matsci.29.1.295
  2. J.H. Bang, K.S. Suslick. Adv. Mater. 22, 1039 (2010). https://doi.org/10.1002/adma.200904093
  3. A. Gedanken. Ultrason. Sonochem. 11, 47 (2004). https://doi.org/10.1016/j.ultsonch.2004.01.037
  4. H. Xu, B.W. Zeiger, K.S. Suslick. Chem. Soc. Rev. 42, 2555 (2013). https://doi.org/10.1039/c2cs35282f
  5. M. Ashokkumar. Ultrason. Sonochem. 18, 864 (2011). https://doi.org/10.1016/j.ultsonch.2010.11.016
  6. K. Okitsu, M. Ashokkumar, F. Grieser. J. Phys. Chem. B 109, 20673 (2005). https://doi.org/10.1021/jp0549374
  7. H.N. Kim, K.S. Suslick. Crystals 8, 7, 280 (2018). https://doi.org/10.3390/cryst8070280
  8. R.A. Salkar, P. Jeevanandam, S.T. Aruna, Y. Koltypin, A. Gedanken. J. Mater. Chem. 9, 1333 (1999). https://doi.org/10.1039/a900568d
  9. T.J. Mason, J.P. Lorimer. Applied sonochemistry: The uses of power ultrasound in chemistry and processing. Wiley-VCH, Weinheim (2002). 303 p
  10. V.V. Chirkova, N.A. Volkov, G.E. Abrosimova. FTT 67, (in Russian) 1, 56 (2025)
  11. D. Kashchiev. Nucleation: Basic theory with applications. Butterworth Heinemann, Oxford, Boston (2000). 544 p
  12. N.T.K. Thanh, N. Maclean, S. Mahiddine. Chem. Rev. 114, 15, 7610 (2014). https://doi.org/10.1021/cr400544s
  13. V.A. Akulichev, V.N. Alekseev, V.A. Bulanov. Periodicheskie fazovye prevrashcheniya v zhidkostyakh. Nauka. M. (1986). 279 s. (in Russian)
  14. S.A. Kukushkin, A.V. Osipov. UFN 168, 10, 1084 (1998). (in Russian). https://doi.org/10.1070/PU1998v041n10ABEH000461
  15. V.V. Slezov. Kinetics of first-order phase transitions. Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim (2009). 415 p
  16. V.G. Dubrovskii. Teoriay formirovaniya epitaksial'nykh nanostruktur. Fizmatlit, M. (2009). 350 s. (in Russian)
  17. S.C. Gupta. The classical Stefan problem. Basic concepts, modelling and analysis with quasi-analytical solutions and methods. 2nd edn. Elsevier, Amsterdam (2017). 750 p. https://doi.org/10.1016/C2017-0-02306-6

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru