Physics of the Solid State
Volumes and Issues
Effect of electrical and temperature conditions on the thermal expansion of Ba0.97Bi0.02TiO3 ceramics in the Pm3m↔ P4mm phase transition region
Fokina V. D.1, Gorev M. V.1,2, Bondarev V. S.1,2, Flerov I. N.1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Institute of Engineering Physics and Radio Electronics, Krasnoyarsk, Russia
Email: fokina@iph.krasn.ru, gorev@iph.krasn.ru, vbondarev@yandex.ru, flerov@iph.krasn.ru

PDF
The influence of various combinations and conditions of the electric field and temperature on the thermal expansion of Ba0.97Bi0.02TiO3 ceramics in the region of the ferroelectric phase transition Pm(3)m↔ P4mm was studied. The sequence of thermal/electrical processes required to obtain reliably reproducible results during thermal cycling has been established. The possibility of targeted variation within the limits of ~(20-30) % of the values both of the anomalous thermal expansion coefficient and deformation near and far from the transition temperature, respectively, is shown, which can undoubtedly be used at the stage of developing ceramic elements for miniature electromechanical devices. Keywords: phase transitions, ferroelectrics, thermal expansion, electric field.
  1. G.A. Smolensky, V.A. Bokov, V.A. Isupov, N.N. Krainik, R.E. Pasynkov, M.S. Shur. Segnetoelektriki i antisegnetoelektriki. Nauka, L. (1971). 477 p. (in Russian)
  2. B.A. Strukov, A.P. Levanyuk. Fizicheskie ocnovy cetnetoelektricheskikh yavlenii v kristallakh. Nauka, M. (1983) 240 s. (in Russian)
  3. M. Lains, A. Glass. Segnetoelektriki i rodstvennye im materialy. Mir, M. (1981) 736 s. (in Russian)
  4. D. Meyrhofer. Phys. Rev. 112, 2, 413 (1958)
  5. W.J. Merz. Phys. Rev. 91, 513 (1953)
  6. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Ya. Shur, Y. Feng, Z. Xu, X. Wei. Nano Energy, 67, 104264 (2020)
  7. F. Si, B. Tang, Z. Fang, H. Li, Sh. Zhang. J. Alloys Compd. 819, 153004 (2020)
  8. P. Zhao, L. Li, X. Wang. Microstructures 3, 2023002 (2023)
  9. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, Jr., J. Rodel. Appl. Phys. Rev. 4, 041305 (2017)
  10. J. Fischer, C. Molin, S. E. Gebhardt, D. Hagele, J. Rudolph. J. Appl. Phys. 135, 044101 (2024)
  11. V.D. Fokina, M.V. Gorev, V.S. Bondarev, M.S. Molokeev, I.N. Flerov. FTT 66, 10, 1780 (2024). (in Russian)
  12. M.V. Gorev, I.N. Flerov, V.S. Bondarev, M. Maglione, A. Simon. FTT 53, 10, 1969 (2011). (in Russian)
  13. A. Simon, J. Ravez, M. Maglione. Solid State Sci. 7, 925 (2005)
  14. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. --- User's Manual. Bruker AXS, Karlsruhe, Germany. 2008
  15. M. Gorev, V. Bondarev, I. Flerov, M. Maglione, A. Simon, P. Sciau, M. Boulos, S. Guillemet-Fritsch. J. Phys.: Condens. Matter. 21, 075902 (2009)
  16. W.N. Lawless. Phys. Rev. B 17, 1458 (1978)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru