Size-dependent optical properties of aluminum nanoparticle arrays formed by vacuum-thermal deposition
Gorelkov O. P.
1,2, Volkova L. S.
3,1, Grishin T. S.
3,1, Kozlov A.O.
4, Trifonov A.Yu.
5, Pavlikov A. V.
6, Lavrov I.V.
1, Dubkov S.V.
1, Anikin A. V.
1, Gromov D. G.
11National Research University of Electronic Technology (MIET), Zelenograd, Russia
2JSC «Mikron», Moscow, Russia
3 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
4Scientific-Manufacturing Complex “Technological Centre”, Moscow, Russia
5National Research Center “Kurchatov Institute”, Moscow, Russia
6Moscow State University, Moscow, Russia
Email: oleg.gorelkov@gmail.com, grishin.t@outlook.com, alex_kozlov@yahoo.com, trif123456@yandex.ru, pavlikovav@my.msu.ru, iglavr@mail.ru, i@sdubkov.ru, anikin@stcp.tech, gromadima@gmail.com
The processes of aluminum nanoparticle (Al-NPs) array formation by vacuum-thermal evaporation and condensation at a substrate temperature of 150 oC were studied using SEM, TEM and ellipsometry methods. It was shown that the particles in the array have a flattened shape, and their average size in the array depends linearly on the amount of deposited aluminum. Experimental spectral dependences of the refractive index, extinction coefficients and transmittance of Al arrays coated with a SiO2 layer were obtained. Experimental data were compared with the results of modeling the Al-NPs/SiO2 composite material using the Maxwell-Garnett approximation and its generalization. It is shown that an important factor determining the spectral optical characteristics of the Al-NPs/SiO2, composite material is the non-uniformity of Al nanoparticle shape in the array. Keywords: plasmon resonance, aluminum, nanoparticles, electron beam evaporation, ellipsometry, optical properties.
- A. Raj, R.K. Thomas. Optical and molecular physics. Apple Academic Press. (2021). Vol. 1, p. 43
- V.I. Balykin, P.N. Melent'ev. UFN (in Russian). 188, 2, 143 (2018)
- S.V. Dubkov, A.I. Savitskiy, A.Yu. Trifonov, G.S. Yeritsyan, Yu.P. Shaman, E.P. Kitsyuk, A. Tarasov, O. Shtyka, R. Ciesielski, D.G. Gromov. Opt. Mater. X 7, 100055 (2020)
- D.G. Gromov, S.V. Dubkov, A.I. Savitskiy, Yu.P. Shaman, A.A. Polokhin, I.A. Belogorokhov, A.Yu. Trifonov. Appl. Surf. Sci. 489, 701 (2019)
- K. Kneipp. Phys. Today 60, 11, 40 (2007)
- T.P. Araujo, J. Quiroz, E.C.M. Barbosa, P.H.C. Camargo. Curr. Opin. Colloid Interface Sci. 39, 110 (2019)
- H. Lee, H. Lee, J.Y. Park. Nano Lett. 19, 2, 891 (2019)
- C. Yao, J. Lin, L. Li, K. Jiang, J. Sun, J. Wu. Phys. Status Solidi A 218, 9, 2000737 (2021)
- F. Temerov, K. Pham, P. Juuti, J.M. Makela, J.M. Grachova, S. Kumar, S. Eslava, J. Saarinen. ACS Appl. Mater. Interfaces 12, 37, 41200 (2020)
- Y. Hattori, S.G. Alvarez, J. Meng, K. Zheng, J. Sa. ACS Appl. Nano Mater. 4, 2, 2052 (2021)
- R. Li, D. Wang, W. Wang, X. Ao, G.C. Schaz, R. Schaller, T.W. Odom. J. Opt. Soc. Am. B 36, 7, 104 (2019)
- A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, S. Boujday. Biosensors 9, 2, 78 (2019)
- N.A. Brazhe, A.B. Evlyukhin, E.A. Goodilin, A.A. Semenova, S.M. Novikov, S.I. Bozhevolniy, B.N. Chichkov, A.S. Sarycheva, A.A. Baizhumanov, E.I. Nikelshparg, L.I. Deev, E.G. Maksimov, G.V. Maksimov, O. Sosnovtseva. Sci. Rep. 5, 1, 13793 (2015)
- U. Boda, J. Strandberg, J. Eriksson, X. Liu, V. Beni, K. Tybrandt. ACS Appl. Mater. Interfaces 15, 9, 12372 (2023)
- A.E. Ershov, V.S. Gerasimov, R.G. Bikbaev, S.P. Polyutov, S.V. Karpov. J. Quant. Spectrosc. Radiat. Transf. 248, 106961 (2020)
- M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas. ACS Nano 8, 1, 834 (2014)
- X. Liu, A.W. Bruch, H.X. Tang. Adv. Opt. Photonics. 15, 1, 236 (2023)
- D. Han, S. Deng, T. Ye, Y. Wei. Microsyst. Nanoeng. 9, 1, 40 (2023)
- C.K. Chang, H.Y. Chien. Opt. Laser Technol. 174, 110653 (2024)
- E.S. Kim, Y.M. Kim, K.C. Choi. Plasmonics 11, 5, 1337 (2016)
- K. Yang, X. Yao, B. Liu, B. Ren. Adv. Mater. 33, 50, 2007988 (2021)
- A.N. Shipway, E. Katz, I. Willner. Chem. Phys. Chem. 1, 1, 18 (2000)
- Ch.Z. Wang, K. Huang, N. Gao, Zh.M. Wu, J.Y. Kang. Appl. Mech. Mater. 621, 65 (2014)
- D.G. Gromov, L.M. Pavlova, A.I. Savitskiy, A.Yu. Trifonov. Phys. Solid State 57, 1, 173 (2015)
- D.G. Gromov, L.M. Pavlova, A.I. Savitskiy, A.Yu. Trifonov. Appl. Phys. A. 118, 4, 1297 (2015)
- T.S. Grishin, L.S. Volkova, A.A. Dudin, G.A. Medenkov, D.V. Novikov, S.V. Dubkov, D.G. Gromov. Opt. Mater. 167, 117260 (2025)
- K. Boren, D. Khafmen. Pogloschenie i rasseyanie sveta malymi chastitsami. Mir, M. (1986). 660 s. (in Russian)
- I.V. Lavrov. Izvestiya vuzov. Elektronika 28, 4, 403 (2023). (in Russian)
- I.V. Lavrov. Vychislenie effektivnykh dielektricheskikh i provodyashchikh kharakteristik sluchaino-neodnorodnykh teksturirovannykh sred: diss. k.f.-m. nauk. M.: MIET, 2010. 167 s. (in Russian)
- W.T. Doyle. Phys. Rev. B. 39, 14, 9852 (1989)
- E.A. Coronado, G.C. Schatz. J. Chem. Phys. 119, 3926 (2003)
- E.D. Palik. Handbook of Optical Constants of Solids. Acad. Press, Orlando. (1985). Vol. 3, 804 p
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.