Вышедшие номера
Расчет электронно-энергетических свойств композитных пленок на основе графена, LiTi2(PO4)3 и Li3V2(PO4)3 методом функционала плотности
Russian Science Foundation, 25-22-00290
Шунаев В.В.1, Петрунин А.А.1, Ушаков А.В.1, Глухова О.Е.1,2
1Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, Саратов, Россия
2Первый государственный медицинский университет им. И.М. Сеченова, Москва, Россия
Email: vshunaev@list.ru
Поступила в редакцию: 7 апреля 2025 г.
В окончательной редакции: 23 июня 2025 г.
Принята к печати: 30 июня 2025 г.
Выставление онлайн: 5 декабря 2025 г.

Методом теории функционала плотности построены суперъячейки композитных пленок на основе графена, фосфата лития-титана и фосфата ванадия-лития с различными типами укладки. Установлено, что взаимное расположение компонентов существенно влияет на электронно-энергетические параметры данных структур. Полученные результаты способствуют решению экспериментальной задачи по улучшению производительности и энергоэффективности литий-ионных батарей, в которых рассмотренные структуры могут быть использованы в качестве катодов. Ключевые слова: суперъячейки, электрод, графен, фосфат лития-титана, фосфат ванадия-лития, уровень Ферми.
  1. C. Liu, R. Masse, X. Nan, G. Cao. Energy Storage Mater., 4, 15 (2016). DOI: 10.1016/j.ensm.2016.02.002
  2. A.V. Ivanishchev, A.V. Ushakov, I.A. Ivanishcheva, A.V. Churikov, A.V. Mironov, S.S. Fedotov, N.R. Khasanova, E.V. Antipov. Electrochim. Acta, 230, 479 (2017). DOI: 10.1016/j.electacta.2017.02.009
  3. J. Xiao, B. Zhang, J. Liu, X. He, Zh. Xiao, H. Qin, T. Liu, Kh. Amine, X. Ou. Nano Energy, 127, 109730 (2024). DOI: 10.1016/j.nanoen.2024.109730
  4. Z. Guo, X. Qin, Y. Xie, Ch. Lei, T. Wei, Y. Zhang. Chem. Phys. Lett., 806, 140010 (2022). DOI: 10.1016/j.cplett.2022.140010
  5. A.V. Ushakov, S.V. Makhov, N.A. Gridina, A.V. Ivanishchev, I.M. Gamayunova. Monatsh Chem., 150, 499 (2019). DOI: 10.1007/s00706-019-2374-4
  6. S. Yu, A. Mertens, R. Schierholz, X. Gao, O. Aslanbas, J. Mertens, H. Kungl, H. Tempel, R.A. Eichel. J. Electrochem. Soc., 164 (2), A370 (2017). DOI: 10.1149/2.1151702jes
  7. H. Wang, H. Zhang, Yi. Cheng, K. Feng, X. Li, H. Zhang. Electrochim. Acta, 278, 279 (2018). DOI: 10.1016/j.electacta.2018.05.047
  8. X. Li, N. Wang, T. Su, Y. Chai. Appl. Surf. Sci., 601, 154285 (2022). DOI: 10.1016/j.apsusc.2022.154285
  9. X. Wang. Int. J. Electrochem. Sci., 16 (11), (2021). DOI: 10.20964/2021.11.52
  10. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
  11. J.M. Soler, E. Artacho, J.D. Gale, A. Garci a, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys. Condens. Matter., 14, 2745 (2002). DOI: 10.1088/0953-8984/14/11/302
  12. S. Grimme. J. Comput. Chem., 27, 1787 (2006). DOI: 10.1002/jcc.20495
  13. R.S. Mulliken. J. Chem. Phys., 23 (10), 1833 (1955). DOI: 10.1063/1.1740588
  14. В.В. Шунаев, А.А. Петрунин, А.В. Ушаков, О.Е. Глухова. ЖТФ, 94 (3), 372 (2024). DOI: 10.61011/JTF.2024.03.57374.314-23
  15. S. Luryi. Appl. Phys. Lett., 52, 501 (1988). DOI: 10.1063/1.99649

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.