Amplitude noise of 89X nm-range single-mode intracavity-contacted vertical-cavity surface-emitting lasers
Blokhin S. A.
1, Bobrov M. A.
1, Kovach J. N.
1, Blokhin A. A.
1, Marchiy M N.
1, Kuzmenkov N. A.
1, Pazgalev A.S.
1, Kuzmenkov A. G.
1, Vasyl’ev A. P.
2, Maleev N. A.
11Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
Email: blokh@mail.ioffe.ru, bobrov.mikh@gmail.com, j-n-kovach@mail.ioffe.ru, aleksey.blokhin@mail.ioffe.ru, mariamaleeva@yandex.ru, anatoly.pazgalev@mail.ioffe.ru, kuzmenkov@mail.ioffe.ru, vasiljev@mail.ioffe.ru, Maleev@beam.ioffe.ru
In this work, we study the spectral density of the relative intensity noise (amplitude noise) of the 89X nm range single-mode vertical-cavity surface-emitting lasers with hybrid microcavity and carrier injection through the intracavity contacts and composite Bragg reflector. Carried analysis of the laser amplitude noise behavior demonstrated 1/f-noise dependance for low frequencies with the transition to white noise at 10 kHz and higher. The amplitude noise dependance from the laser optical power showed W-like shape behavior. An increase in temperature led to an increase in amplitude noise both at a fixed operating current and at a comparable laser optical power. It was shown that developed lasers have amplitude noise lower than 1-100 kHz in the frequency range -120 dB/Hz (depending on temperature and optical power) which allows to use them in compact atomic sensors of various types. Keywords: vertical-cavity surface-emitting laser, relative intensity noise, amplitude noise, quantum sensors.
- J. Kitching. Appl. Phys. Rev., 5 (3), 031302 (2018). DOI: 10.1063/1.5026238
- P. Zhou, W. Quan, K. Wei, Z. Liang, J. Hu, L. Liu, G. Hu, A. Wang, M.Ye. Biosensors, 12 (12), 1098 (2022). DOI: 10.3390/bios12121098
- B.D. Padullaparthi, J. Tatum, I. Kenichi. VCSEL Industry: Communication and Sensing (John Wiley \& Sons, 2021)
- D.K. Serkland, K.M. Geib, G.M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, M. Prouty In: Vertical-Cavity Surface-Emitting Lasers XI, ed. by K.D. Choquette, J.K. Guenter. Integrated Optoelectronic Devices (2007), p. 648406. DOI: 10.1117/12.715077
- J.D. Francesco, F. Gruet, C. Schori, C. Affolderbach, R. Matthey, G. Mileti, Y. Salvade, Y. Petremand, N. De Rooij In: Semiconductor Lasers and Laser Dynamics IV, ed. by. K. Panajotov. SPIE Photonics Europe (2010), p. 77201T. DOI: 10.1117/12.854147
- F. Gruet, A. Al-Samaneh, E. Kroemer, L. Bimboes, D. Miletic, C. Affolderbach, D. Wahl, R. Boudot, G. Mileti, R. Michalzik. Opt. Express., 21 (5), 5781 (2013). DOI: 10.1364/OE.21.005781
- V.A. Gaisler, I.A. Derebezov, A.V. Gaisler, D.V. Dmitriev, A.K. Bakarov, A.I. Toropov, M.M. Kachanova, Y.A. Zhivodkov, A.V. Latyshev, M.N. Skvortsov, S.M. Ignatovich, V.I. Vishnyakov, N.L. Kvashnin, I.S. Mesenzova, A.V. Taichenachev, S.N. Bagaev, I.Y. Blinov, D.A. Parekhin, Optoelectron. Instrum. Data Process., 57 (5), 445-450 (2021). DOI: 10.3103/S875669902105006X
- Q. Fu, Y. Sun, S. Yu, A. Wang, J. Yin, Y. Zhao, J. Dong. Nanomaterials, 13 (6), 1120 (2023). DOI: 10.3390/nano13061120
- Y.L. Bessonov, N.B. Kornilova, V.D. Kurnosov, N.V. Moroz, S.D. Narolenko, C.M. Thai, V.R. Shidlovskii. Sov. J. Quantum Electron., 15 (11), 1567-1569 (1985). DOI: 10.1070/QE1985v015n11ABEH007990
- T. Suhara. Semiconductor Laser Fundamentals (CRC Press, 2004). DOI: 10.1201/9780203020470
- A.P. Bogatov, A.E. Drakin, S.A. Plisyuk, A.A. Stratonnikov, M.S. Kobyakova, A.V. Zubanov, A.A. Marmalyuk, A.A. Padalitsa. Quantum Electron., 32 (9), 809-814 (2002). DOI: 10.1070/QE2002v032n09ABEH002296
- A.P. Bogatov, P.G. Eliseev, O.A. Kobildzhanov, V.R. Madgazin, O.G. Okhotnikov, G.T. Pak, A.V. Khaidarov. Sov. J. Quantum Electron., 16 (12), 1596-1602 (1986). DOI: 10.1070/QE1986v016n12ABEH008476
- S.-L. Jang, J.-Y. Wu. Solid. State. Electron., 36 (2), 189-196 (1993). DOI: 10.1016/0038-1101(93)90138-G
- F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme. Reports Prog. Phys., 44 (5), 479-532 (1981). DOI: 10.1088/0034-4885/44/5/001
- P. Signoret, G. Belleville, B. Orsal. Fluct. Noise Lett., 01 (01), L1-L5 (2001). DOI: 10.1142/S0219477501000044
- J. Zhang, W. Liao, X. Wang, G. Lu, S. Yang, Z. Wei. Photonics, 9 (11), 801 (2022). DOI: 10.3390/photonics9110801
- M.A. Bobrov, N.A. Maleev, S.A. Blokhin, A.G. Kuzmenkov, A.P. Vasil'ev, A.A. Blokhin, Y.A. Guseva, M.M. Kulagina, Y.M. Zadiranov, S.I. Troshkov, V. Lysak, V.M. Ustinov. Semiconductors, 50 (10), 1390-1395 (2016). DOI: 10.1134/S1063782616100092
- S.A. Blokhin, N.A. Maleev, M.A. Bobrov, A.G. Kuz'menkov, A.P. Vasil'ev, Y.M. Zadiranov, M.M. Kulagina, A.A. Blokhin, Y.A. Guseva, A.M. Ospennikov, M.V. Petrenko, A.G. Gladyshev, A.Y. Egorov, I.I. Novikov, L.Y. Karachinsky, D.V. Denisov, V.M. Ustinov. Quantum Electron., 49 (2), 187-190 (2019). DOI: 10.1070/QEL16871
- S.A. Blokhin, Y.N. Kovach, M.A. Bobrov, A.A. Blokhin, N.A. Maleev. St. Petersbg. Polytech. Univ. J. Phys. Math., 16 (3), 16-22 (2023). DOI: 10.18721/JPM.163.202
- M. Yamada. IEEE J. Quantum Electron., 22 (7), 1052-1059 (1986). DOI: 10.1109/JQE.1986.1073087
- E. Kroemer, J. Rutkowski, V. Maurice, R. Vicarini, M.A. Hafiz, C. Gorecki, R. Boudot. Appl. Opt., 55 (31), 8839 (2016). DOI: 10.1364/AO.55.008839
- A.V. Marugin, A.V. Kharchev, V.B. Tsaregradsky. ZhTF, 64 (5), 62 (1994) (in Russian)
- F. Koyama, K. Morito, K. Iga. IEEE J. Quantum Electron., 27 (6), 1410-1416 (1991). DOI: 10.1109/3.89958
- D.M. Kuchta, J. Gamelin, J.D. Walker, J. Lin, K.Y. Lau, J.S. Smith, M. Hong, J.P. Mannaerts. Appl. Phys. Lett., 62 (11), 1194-1196 (1993). DOI: 10.1063/1.108731
- H.P. Zappe, F. Monti di Sopra, H.-P. Gauggel, K.H. Gulden, R. Hovel, M. Moser. In: Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, ed. by G.T. Burnham. Symposium on Integrated Optoelectronics (SPIE, 2000), p. 106. DOI: 10.1117/12.380526
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.