Interpretation of electronic spectra of a number of 5-substituted uracils in aqueous solution based on modeling of their H-complexes with water molecules and the orbital approach
Tseplina S. N. 1, Tseplin E. E. 1
1Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
Email: SN_Tseplina@mail.ru, tzeplin@mail.ru

PDF
Absorption spectra of 5-hydroxymethyluracil, uracil, 5-fluorouracil and 5-bromouracil in a neutral aqueous solution were obtained. The modeling of hydrogen complexes of molecules of the compounds under consideration with water molecules was carried out, and then the absorption spectra in aqueous solution were calculated using the TDDFT B3LYP/6-311+G(d,p) method in combination with the polarizable continuum model. The linear dependence of the energies of electronic transitions obtained from the absorption spectra on the values of the energy gap between the corresponding occupied and vacant molecular orbitals of the calculated hydrogen complexes is shown. Keywords: absorption spectra, 5-hydroxymethyluracil, uracil, hydrogen complex, OMO-UMO energy gap, solvent effect.
  1. T.S. Lawrence, M.A. Davis, J. Maybaum, P.L. Stetson, W.D. Ensminger. Radiat. Res., 123 (2), 192 (1990). DOI: 10.2307/3577544
  2. P.W. McLaughlin, W.R. Mancini, P.L. Stetson, H.S. Greenberg, N. Nguyen, H. Seabury, D.B Heidorn, T.S. Lawrence. Int. J. Radiat. Oncol. Biol. Phys., 26 (4), 637 (1993). DOI: 10.1016/0360-3016(93)90281-Y
  3. N.E. Geacintov, S. Broyde. The chemical biology of DNA damage (Wiley VCH, Weinheim, 2010), p. 7-12. DOI: 10.1002/9783527630110
  4. D. Gackowski, M. Gawronski, C. Kerr, T. Radivoyevitch, E. Zarakowska, M. Starczak, A. Abakir, A. Ruzov, J.P. Maciejewski, R. Olinski. Haematologica, 105 (5), e213 (2020). DOI: 10.3324/haematol.2019.224030
  5. M. Janouvskova, Z. Vani kova, F. Nici, S. Bohavcova, D. Vi tovska, H. vSanderova, M. Hocek, L. Krasny. Chem. Commun., 53 (99), 13253 (2017). DOI: 10.1039/C7CC08053K
  6. S. Carson, J. Wilson, A. Aksimentiev, P.R. Weigele, M. Wanunu. Nucleic Acids Res., 44 (5), 2085 (2016). DOI: 10.1093/nar/gkv1199
  7. M. Chahinian, H.B. Seba, B. Ancian. Chem. Phys. Lett., 285 (5-6), 337 (1998). DOI: 10.1016/S0009-2614(98)00109-2
  8. M.-P. Gaigeot, M. Sprik. J. Phys. Chem. B, 107 (38), 10344 (2003). DOI: 10.1021/jp034788u
  9. R. Improta, V. Barone. J. Am. Chem. Soc., 126 (44), 14320 (2004). DOI: 10.1021/ja0460561
  10. Y. He, C. Wu, W. Kong. J. Phys. Chem. A, 108 (6), 943 (2004). DOI: 10.1021/jp036553o
  11. M.-P. Gaigeot, M. Sprik. J. Phys. Chem. B, 108 (22), 7458 (2004). DOI: 10.1021/jp049940m
  12. T. Gustavsson, A. Banyasz, E. Lazzarotto, D. Markovitsi, G. Scalmani, M.J. Frisch, V. Barone, R. Improta. J. Am. Chem. Soc., 128 (2), 607 (2006). DOI: 10.1021/ja056181s
  13. T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, V. Barone, R. Improta. J. Phys. Chem. B, 110 (26), 12843 (2006). DOI: 10.1021/jp062266j
  14. M. Busker, M. Nispel, T. Haber, K. Kleinermanns, M. Etinski, T. Fleig. ChemPhysChem, 9 (11), 1570 (2008). DOI: 10.1002/cphc.200800111
  15. M. Etinski, C.M. Marian. Phys. Chem. Chem. Phys., 12 (19), 4915 (2010). DOI: 10.1039/B925677F
  16. S.N. Tseplina, E.E. Tseplin. the Lowest High Energy Chem., 55 (1), 96 (2021). DOI: 10.1134/S0018143921010136
  17. W.Z. Lohmann. Naturforsch. C, 29 (9-10), 493 (1974). DOI: 10.1515/znc-1974-9-1007
  18. L.B. Clark, I. Tinoco. J. Am. Chem. Soc., 87 (1), 11 (1965). DOI: 10.1021/ja01079a003
  19. D. Voet, W.B. Gratzer, R.A. Cox, P. Doty. Biopolymers, 1 (3), 193 (1963). DOI: 10.1002/bip.360010302
  20. Y. Miura, Y. Yamamoto, S. Karashima, N. Orimo, A. Hara, K. Fukuoka, T. Ishiyama, T. Suzuki. J. Am. Chem. Soc., 145 (6), 3369 (2023). DOI: 10.1021/jacs.2c09803
  21. C.S. Anstoter, M. DelloStritto, M.L. Klein, S. Matsika. J. Phys. Chem. A, 125 (32), 6995 (2021). DOI: 10.1021/acs.jpca.1c05288
  22. M. Kumar, G. Jaiswar, M. Afzal, M. Muddassir, A. Alarifi, A. Fatima, N. Siddiqui, R. Ayub, N.A.Y. Abduh, W.S. Saeed, S. Javed. Molecules, 28 (5), 2116 (2023). DOI: 10.3390/molecules28052116
  23. S.N. Tseplina, E.E. Tseplin. Opt. Spectrosc., 129 (7), 737 (2021). DOI: 10.1134/S0030400X21050179
  24. S.N. Tseplina, E.E. Tseplin. High Energy Chem., 58 (4), 369 (2024). DOI: 10.1134/S001814392470036X
  25. E.E. Tseplin, S.N. Tseplina, O.G. Khvostenko. Opt. Spectrosc., 125 (4), 506 (2018). DOI: 10.1134/S0030400X18100260
  26. E.E. Tseplin, S.N. Tseplina. Chem. Phys. Lett., 716, 142 (2019). DOI: 10.1016/j.cplett.2018.12.038
  27. R. Improta, F. Santoro, L. Blancafort. Chem. Rev., 116 (6), 3540 (2016). DOI: 10.1021/acs.chemrev.5b00444
  28. A.D. Becke. J. Chem. Phys., 98 (7), 5648 (1993). DOI: 10.1063/1.464913
  29. C. Lee, W. Yang, R.G. Parr. Phys. Rev. B, 37 (2), 785 (1988). DOI: 10.1103/PhysRevB.37.785
  30. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Cuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M.Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian 09, Revision C.1, Gaussian, Inc., Wallingford CT, 2009
  31. J. Tomasi, B. Mennucci, R. Cammi. Chem. Rev., 105 (8), 2999 (2005). DOI: 10.1021/cr9904009
  32. S. Miertus, E. Scrocco, J. Tomasi. Chem. Phys., 55 (1), 117 (1981). DOI: 10.1016/0301-0104(81)85090-2
  33. G.A. Zhurko, D.A. Zhurko. Chemcraft, version 1.7 [Electronic source] URL: https://www.chemcraftprog.com
  34. S. Hamad, C. Moon, C.R.A. Catlow, A.T. Hulme, S.L. Price. J. Phys. Chem. B, 110 (7), 3323 (2006). DOI: 10.1021/jp055982e
  35. C.M. Marian, F. Schneider, M. Kleinschmidt, J. Tatchen. Eur. Phys. J. D, 20, 357 (2002). DOI: 10.1140/epjd/e2002-00158-3
  36. D.A. Estrin, L. Paglieri, G.J. Corongiu. Phys. Chem., 98 (22), 5653 (1994). DOI: 10.1021/j100073a014
  37. N. Markova, V. Enchev, I. Timtcheva. J. Phys. Chem. A, 109 (9), 1981 (2005). DOI: 10.1021/jp046132m
  38. M.E. Casida, M. Huix-Rotllant. Annu. Rev. Phys. Chem., 63, 287 (2012). DOI: 10.1146/annurev-physchem-032511-143803
  39. M.A.L. Marques, E.K.U. Gross. Annu. Rev. Phys. Chem., 55, 427 (2004). DOI: 10.1146/annurev.physchem.55.091602.094449

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru