Interaction of nitrobenzene by ArF-laser
Puchikin A. V. 1, Panchenko Yu. N. 1,2, Andreev M. V. 2, Prokopiev V. E. 1,2
1Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2Tomsk State University, Tomsk, Russia
Email: apuchikin@mail.ru, yu.n.panchenko@mail.ru, andreevmv_86@mail.ru, prokop@ogl.hcei.tsc.ru

PDF
A single-frequency process of interaction between the radiation of an excimer ArF laser and the vapor phase of nitrobenzene is considered. The fluorescence of vibrationally excited nitric oxide molecules formed during a photofragmentation of nitrobenzene is investigated. The influence of inert gases He, Ne and N2 on the fluorescence of the excited states of NO C2 and NO A2Σ, D2Σ has been demonstrated. In a nitrogen environment, the fluorescence of NO A2Σ (ν'=0) is enhanced due to the intermolecular non-radiative energy transfer from the metastable level N2 A3Σ to the electronic level of NO A2Σ. Keywords: nitro compound, photofragmentation, nitric oxide, fluorescence.
  1. M.O. Rodgers, K. Asai, D.D. Davis. Appl. Opt., 19 (21), 3597 (1980). DOI: 10.1364/AO.19.003597
  2. C.L. Sam, J.T. Yardley. Chem. Phys. Lett., 61, 509-512 (1979). DOI: 10.1016/0009-2614(79)87161-4
  3. A.V. Puchikin, Yu.N. Panchenko, S.A. Yampolskaya, M.V. Andreev, V.E. Prokopiev. J. Lumin., 263, 120073 (2023). DOI: 10.1016/j.jlumin.2023.120073
  4. K.A. Rahman, K.S. Patel, M.N. Slipchenko, T.R. Meyer, Zh. Zhang, Y. Wu, J.R. Gord, S. Roy. Appl. Opt., 57 (20), 5666 (2018). DOI: 10.1364/AO.57.005666
  5. A.V. Puchikin, Yu.N. Panchenko, S.A. Yampolskaya, M.V. Andreev, V.E. Prokopiev. J. Lumin., 268, 120412 (2024). DOI: 10.1016/j.jlumin.2023.120412
  6. T. Arusi-Parpar, D. Heflinger, R. Lavi. Appl. Opt., 40 (36), 6677 (2001). DOI: 10.1364/AO.40.006677
  7. C.M. Wynn, S. Palmacci, R.R. Kunz, K. Clow, M. Rothschild. Appl. Opt., 47 (31), 5767 (2008). DOI: 10.1364/AO.47.005767
  8. J.S. Schendel, R.E. Stickel, C.A. van Dijk, S.T. Sandholm. Appl. Opt., 29, 4924-4937 (1990). DOI: 10.1364/AO.29.004924
  9. D. Wu, J.P. Singh, F.Y. Yueh, D.L. Monts. Appl. Opt., 35 (21), 3998 (1996). DOI: 10.1364/AO.35.003998
  10. B. Funke, M. Lopez-Puertas, T. von Clarmann, G.P. Stiller, H. Fischer, N. Glatthor, U. Grabowski, M. Hopfner, S. Kellmann, M. Kiefer, A. Linden, G. Mengistu Tsidu, M. Milz, T. Steck, D.Y. Wang. J. Geophys. Res., 110, D09302 (2005). DOI: 10.1029/2004JD005225
  11. C.A. Cruse, J.V. Goodpaster. Anal. Chim. Acta, 1185, 339042 (2021). DOI: 10.1016/j.aca.2021.339042
  12. O.S. Khalil, H.G. Bach, S.P. McGlynn. J. Mol. Spectrosc., 35, 455-460 (1970). DOI: 10.1016/0022-2852(70)90186-4
  13. J. Luque, D.R. Crosley. LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (1999). https://www.sri.com/engage/products-solutions/lifbase
  14. W.G. Bessler, C. Schulz, V. Sick, J.W. Daily. Proc. Third Joint Meeting US Sec. Combust. Inst., 105, 1 (2003). https://api.semanticscholar.org/CorpusID:92818989
  15. S. Nagakura, M. Kojima, Y. Maruyama. J. Mol. Spectrosc., 13, 174-192 (1964). DOI: 10.1016/0022-2852(64)90066-9
  16. D.B. Galloway, J.A. Bartz, L.G. Huey, F.F. Crim. J. Chem. Phys., 98, 2107 (1993). DOI: 10.1063/1.464188
  17. D. Heflinger, T. Arusi-Parpar, Y. Ron, R. Lavi. Opt. Commun., 204, 327-331 (2002). DOI: 10.1016/S0030-4018(02)01250-6
  18. N. Daugey, J. Shu, I. Bar, S. Rosenwaks. Appl. Spectrosc., 53, 57-64 (1999). DOI: 10.1366/0003702991945227
  19. C. Tanjaroon, C.J. Lue, S.W. Reeve, S.D. Allen, J.B. Johnson. Chem. Phys. Lett., 641, 33 (2015). DOI: 10.1016/j.cplett.2015.10.051
  20. M.-F. Lin, Y.T. Lee, C.-K. Ni, S. Xu, M.C. Lin. J. Chem. Phys., 126 (6), 064310 (2007). DOI: 10.1063/1.2435351
  21. K. Tsuji, M. Ikeda, J. Awamura, A. Kawai, K. Shibuya. Chem. Phys. Lett., 374, 601-607 (2003). DOI: 10.1016/S0009-2614(03)00774-7
  22. I. Wilkinson, M.P. Miranda, B.J. Whitaker. J. Chem. Phys., 131, 054308 (2009). DOI: 10.1063/1.3194286
  23. F. Sun, G.P. Glass, R.F. Curl. Chem. Phys. Lett., 337, 72-78 (2001). DOI: 10.1016/S0009-2614(01)00149-X
  24. G. Hancock, M. Morrison. Mol. Phys., 103, 1727-1733 (2005). DOI: 10.1080/00268970500086161
  25. A. Coroiu, D. Parker, G. Groenenboom, J. Barr, I.T. Novalbos, B.J. Whitaker. Eur. Phys. J. D, 38, 151-162 (2006). DOI: 10.1140/epjd/e2006-00029-y
  26. K. Shibuya, F. Stuhl. J. Chem. Phys., 76, 1184-1186 (1982). DOI: 10.1063/1.443043
  27. A.M. Wodtke, L. Huwel, H. Schluter, G. Meijer, P. Andersen, H. Voges. Opt. Lett., 13, 910-912 (1988). DOI: 10.1364/OL.13.000910
  28. E. Miescher. J. Mol. Spectrosc., 53, 302 (1974). DOI: 10.1016/0022-2852(74)90133-7
  29. T. Hikida, T. Ishimaru, I. Sannomiya, Y. Mori. Chem. Phys. Lett., 102, 254-258 (1983). DOI: 10.1016/0009-2614(83)87402-8
  30. T. Hikida, T. Suzuki, Y. Mori. Chem. Phys., 118, 437-444 (1987). DOI: 10.1016/0301-0104(87)85076-0
  31. J. Luque, D.R. Crosley. J. Chem. Phys., 112, 9411-9416 (2000). DOI: 0.1063/1.481560
  32. J. Luque, D.R. Crosley. J. Phys. Chem. A, 104, 2567-2572 (2000). DOI: 10.1021/jp993159a
  33. F. Lahmani, C. Lardeux, D. Solgadi. Chem. Phys. Lett., 81, 531-536 (1981). DOI: 10.1016/0009-2614(81)80457-5
  34. M.C. Lin. IEEE J. Quant. Electr., 10, 516-521 (1974). DOI: 10.1109/jqe.1974.1068181
  35. A.B. Callear, M.J. Pilling. Trans. Faraday Soc., 66, 1618-1634 (1970).DOI: 10.1039/TF9706601618
  36. O.B. D'azy, R. Lopez-Delgado, A. Tramer. Chem. Phys., 9, 327-338 (1975). DOI: 10.1016/0301-0104(75)80072-3
  37. K.L. Wray. JQSRT, 9, 255-276 (1969). DOI: 10.1016/0022-4073(69)90090-9
  38. J.D. Bradshaw, M.O. Rodgers, S.T. Sandholm, S. KeSheng, D.D. Davis. J. Geophys. Res., 90, 12861-12873 (1985). DOI: 10.1029/JD090iD07p12861
  39. J.B. Nee, C.Y. Yuan, J. Hsu, W.J. Chen, J.C. Yang. Chem. Phys., 315, 81-86 (2005). DOI: 10.1016/j.chemphys.2005.03.013
  40. A.B. Callear, I.W.M. Smith. Trans. Faraday Soc., 61, 2383-2394 (1965). DOI: 10.1039/TF9656102383
  41. D.D. Stedman, J. Meyer, D.W. Setser. J. Am. Chem. Soc., 90, 6856-6858 (1968). DOI: 10.1021/ja01026a060
  42. W.G. Clark, D.W. Setser. J. Phys. Chem., 84, 2225-2233 (1980). DOI: 10.1021/j100455a003
  43. K. Yoshino, J.R. Esmond, A.S.-C. Cheung, D.E. Freeman, W.H. Parkinson. Planet. Space Sci., 40, 185-192 (1992). DOI: 10.1016/0032-0633(92)90056-T
  44. M.P. Lee, R.K. Hanson. JQSRT, 36, 425-440 (1986). DOI: 10.1016/0022-4073(86)90098-1
  45. M. Wang, S. C. Connolly, D.S. Venables. JQSRT, 323 109050 (2024). DOI:10.1016/j.jqsrt.2024.109050
  46. W.F. Chang, G. Cooper, C.E. Brion. Chem. Phys., 170, 111-121 (1993). DOI: 10.1016/0301-0104(93)80097-S
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru