Physics of the Solid State
Volumes and Issues
Features of resistance, critical temperature and microstructure of cryogenic thin aluminum films
Tarasov M. A.1, Lomov A. A.2, Scherbachev K. D.3, Tatarintsev A. A.2, Strelkov M. V.1, Zhogov D. S.1, Козулин Р. К. 1, Chekushkin A. M.1, Markina M. A. 1,4, Golovanova A. D.4,5, Troyanovsky A. M.5, Vasiliev A. L.6,7
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2NRC “Kurchatov institute” - Valiev IPT, Moscow, Russia
3National University of Science and Technology MISiS, Moscow, Russia
4National Research University Higher School of Economics, Moscow, Russia
5Kapitza Institute for Physical Problems, Russian Academy of Sciences, Moscow, Russia
6Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
7Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: tarasov@hitech.cplire.ru

PDF
Aluminum films with a thickness of 120 nm and multilayer structures based on them were fabricated by the vacuum thermal evaporation method and experimentally studied. Unlike bulk samples, they demonstrated an order of magnitude higher resistivity up to 260 Ω·nm and a doubled superconducting transition temperature of 2.3 K. It was shown that the observed features are due to both the chemical activity of aluminum and a decrease in the crystallite growth rate. It was found that when evaporating onto a Si(111) substrate cooled with liquid nitrogen, a decrease in the crystallite grain size from 50 nm to 15 nm and a decrease in the surface roughness to rms about 1 nm are observed. The measured transport properties of the studied cryogenic aluminum structures are associated with a decrease in the film thickness and the mean free path of electrons, the appearance of additional scattering of current carriers on oxide atoms, crystallite boundaries, structural defects, distortions and roughness of external and internal boundaries. The studies of films by AFM, SEM, STEM, EDXS, and X-ray diffraction methods showed a correlation between the microstructure and electrical parameters of the films. Keywords: thin films, crystalline structure, surface morphology, residual resistance, kinetic inductance.
  1. A. Braginski. J. Supercond. Nov. Magn. 32, 23-44 (2019). DOI: 10.1007/s10948-018-4884-4
  2. J. Zmuidzinas, A. Karpov, D. Miller, F. Rice, H. Leduc, J. Pearson, J. Stern. In Far-IR, Sub-mm and MM Detector Technology Workshop (2002, April)
  3. T. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. O'Brien. Nature 464, 45-53 (2010)
  4. M. Tarasov, A. Gunbina, A. Chekushkin, R. Yusupov, V. Edelman, V. Koshelets. Appl. Sci. 12, 20, 10525 (2022)
  5. M. Tarasov, L. Kuzmin, N. Kaurova. Instrum. Exp. Tech. 52, 877-881 (2009). DOI: 10.1134/S0020441209060220
  6. N. Kaiser. Appl. Opt. 41, 16, 3053-3060 (2002)
  7. M. Ohring. The Material Science of Thin Films. Academic Press, San Diego, Calif., USA (1992)
  8. A. Lomov, D. Zakharov, M. Tarasov, A. Chekushkin, A. Tatarintsev, D. Kiselev, T. Ilyina, A. Seleznev. Techn. Phys. 69, 6, 1636-1645 (2024). DOI: 10.1134/S1063784224060239
  9. M. Strelkov, A. Chekushkin, M. Fominsky, R. Kozulin, S. Kraevsky, A. Tatarintsev, D. Zakharov, A. Lomov, M. Tarasov. Phys. Solid State 66, 7, 1006-1008 (2024). DOI: 10.61011/PSS.2024.07.58966.35HH
  10. W. Buckel. Physica 126B, 1-7 (1984)
  11. K. Okura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama. Vvedenie v fiziku poverkhnosti (2 glava str. 46). Nauka, M. (2006). 490 s. ISBN 5-02-034355-2. (in Russian)
  12. P. D'esai, H. James, C. Ho. J. Phys. Chem. Ref. Data 13, 1131 (1984)
  13. T. Greibe, M. Stenberg, C. Wilson, T. Bauch, V. Shumeiko, P. Delsing. Phys. Rev. Lett. 106, 097001 (2011)
  14. D. Willsch, D. Rieger, P. Winkel, et al. Nat. Phys. 20, 815-821 (2024). DOI: 10.1038/s41567-024-02400-8
  15. P.V. Andrews, M.B. West, C.R. Robeson. Phil. Mag. 19, 161, 887-898 (1968). https://doi.org/10.1080/14786436908225855
  16. A.F. Mayadas, M. Shatzkes. Phys. Rev. B 1, 1382 (1970)
  17. S. Doyle. Lumped Element Kinetic Inductance Detectors. PhD thesis (University of Car-diff, 2008)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru