Physics of the Solid State
Volumes and Issues
Effect of vacancy defects on the electronic and electrophysical properties of quasi-2D graphene/nanotube films: DFTB study
Slepchenkov M. M. 1
1Saratov State University, Saratov, Russia
Email: slepchenkovm@mail.ru

PDF
Quasi-2D hybrid carbon films formed by horizontally oriented single-walled zigzag (10,0) nanotubes sandwiched between two graphene sheets and covalently bonded to them have been studied within the density functional based tight binding method. The effect of single-vacancy defects on the electronic and electrophysical properties of hybrid graphene-nanotube films has been analyzed. It has been found that both defect-free and defective hybrid films are characterized by the presence of an energy gap in the band structure. With the appearance of defects and an increase in their number, the energy gap begins to narrow. Partial charge transfer from the nanotube to the graphene sheets has been revealed. The charge transfer increases with the appearance of defects and leads to an increase in the anisotropy of electrical conductivity in hybrid graphene-nanotube films. Keywords: single vacancy defect, density of electron states, electrical conductivity, charge transfer.
  1. O.S. Ayanda, A.O. Mmuoegbulam, O. Okezie, N.I. Durumin Iya, S.E. Mohammed, P.H. James, A.B. Muhammad, A.A. Unimke, S.A. Alim, S.M. Yahaya, A. Ojo, T.O. Adaramoye, S.K. Ekundayo, A. Abdullahi, H. Badamasi. J. Nanopart. Res. 26, 106 (2024)
  2. Yu.A. Baimova, R.R. Mulyukov. Grafen, nanotrubki i drugie uglerodnye nanostruktury. RAN, M. (2018). 212 s. (in Russian).
  3. E.F. Sheka, L.A. Chernozatonsky, A.A. Artyukh. Pisma v ZhETF 89, 7, 412 (2009). (in Russian)
  4. A.A. Artyukh, L.A. Chernozatonskii, P.B. Sorokin. Phys. Status Solidi B 247, 11-12, 2927 (2010)
  5. V.T. Dang, D.D. Nguyen, T.T. Cao, P.H. Le, D.L. Tran, N.M. Phan, V.C. Nguyen. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 3, 033002 (2016)
  6. W. Du, Z. Ahmed, Q. Wang, C. Yu, Z. Feng, G. Li, M. Zhang, C. Zhou, R. Senegor, C.Y. Yang. 2D Mater. 6, 4, 042005 (2019)
  7. A. Gbaguidi, S. Namilae, D. Kim. Nanotechnology 31, 25, 255704 (2020)
  8. J. Sheng, Z. Han, G. Jia, S. Zhu, Y. Xu, X. Zhang, Y. Yao, Y. Li. Adv. Funct. Mater. 33, 43, 2306785 (2023)
  9. I.N. Kholmanov, C.W. Magnuson, R. Piner, J.Y. Kim, A.E. Aliev, C. Tan, T.Y. Kim, A.A. Zakhidov, G. Sberveglieri, R.H. Baughman, R.S. Ruoff. Adv. Mater. 27, 3053 (2015)
  10. S. Pyo, Y. Eun, J. Sim, K. Kim, J. Choi. Micro and Nano Syst. Lett. 10, 9 (2022)
  11. B. Liu, J. Sun, J. Zhao, X. Yun. Adv. Compos. Hybrid Mater. 8, 1 (2025)
  12. S. Wang, J. Yang, X. Zhou, J. Xie, L. Ma, B. Huang. J. Electroanal. Chem. 722, 141 (2014)
  13. Z. Rezaei, M.R. Golobosnafard. J. Ultrafine Grained Nanostructured Mater. 55, 1, 45 (2022)
  14. M. Fikry, M. Abbas, A. Sayed, A. Nouh, A. Ibrahim, A.S. Mansour. J. Mater. Sci.: Mater. Electron. 83, 7, 391 (2022)
  15. G.K. Maron, J.H. Alano, B.d.S. Noremberg, L.d.S. Rodrigues, V. Stolojan, S.R.P. Silva, N.L. Villarreal Carreno. J. Alloys Compd. 836, 155408 (2020)
  16. L. Chen, D. Li, X. Zheng, L. Chen, Y. Zhang, Z. Liang, J. Feng, P. Si, J. Lou, L. Ci. J. Electroanal. Chem. 842, 74 (2019)
  17. J.P. John, M.N. T.E., B.S. T.K. Mater. Adv. 2, 6816 (2021)
  18. R.T. Lv, E. Cruz-Silva, M. Terrones. ACS Nano 8, 5, 4061 (2014)
  19. K.L. Routray, S.J.D. Saha. Mater. Res. Bull. 150, 111698 (2024)
  20. J. Cao, Y.X. Zou, X. Gong, P. Gou, J. Qian, R.J. Qian, Z.H. An. Appl. Phys. Lett. 113, 061112 (2018)
  21. M. Alamri, B. Liu, C. Berrie, M. Walsh, J.Z. Wu. Nano Ex. 3, 3, 035004 (2020)
  22. S. Lepak-Kuc, K.Z. Milowska, S. Boncel, M. Szybowicz, A. Dychalska, I. Jozwik, K.K. Koziol, M. Jakubowska, A. Lekawa-Raus. ACS Appl. Mater. Interfaces. 11, 36, 33207 (2019)
  23. B.Yu. Valeev, A.N. Toksumakov, D.G. Kvashnin, L.A. Chernozatonsky. Pisma v ZhETF 115, 2, 103 (2022). (in Russian)
  24. J. Srivastava, A. Gaur. J. Chem. Phys. 155, 244104 (2021)
  25. M.D. Bhatt, H. Kim, G. Kim. RSC Adv. 12, 33, 21520 (2022)
  26. V.V. Mitrofanov, M.M. Slepchenkov, G. Zhang, O.E. Glukhova. Carbon 115, 803 (2017)
  27. M. Li, X.Liu, X. Zhao, F. Yang, X. Wang, Y. Li. Top. Curr. Chem. 375, 29 (2017)
  28. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B 58, 11, 7260 (1998).
  29. B. Hourahine, B. Aradi, V. Blum, F. Bonafe, A. Buccheri, C. Camacho, C. Cevallos, M.Y. Deshaye, T. Dumitrica, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J.J. Kranz, C. Kohler, T. Kowalczyk, T. Kubavr, I.S. Lee, V. Lutsker, R.J. Maurer, S.K. Min, I. Mitchell, C. Negre, T.A. Niehaus, A.M.N. Niklasson, A.J. Page, A. Pecchia, G. Penazzi, M.P. Persson, J. vRezavc, C.G. Sanchez, M. Sternberg, M. Stohr, F. Stuckenberg, A. Tkatchenko, V. W.-z. Yu, T. Frauenheim. J. Chem. Phys. 152, 124101 (2020)
  30. A. Zobelli, V. Ivanovskaya, P. Wagner, I. Suarez-Martinez, A. Yaya, C. Ewels. Phys. Status Solidi B 249, 2, 276 (2012)
  31. R.S. Mulliken. J. Chem. Phys. 23, 1833 (1955)
  32. S. Datta. Quantum Transport: Atom to Transistor (Cambridge University Press: Cambridge, London, UK, 2005), p. 404.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru