Lapushkin M.N.1
1Ioffe Institute, St. Petersburg, Russia
Email: lapushkin@ms.ioffe.ru
The adsorption of potassium atoms on the AlN(0001) surface was calculated by the density functional method. The 2D AlN layer was modeled by the AlN(0001) 2x2x2 supercell containing 10 AlN bilayers. It was shown that adsorption of K atoms in the hollow position and over surface N atoms is preferable at a coverage of 0.25 monolayer, and the adsorption energies of K atoms are -1.51 eV and -1.53 eV, respectively. At a monolayer coverage, adsorption of K atoms is preferable over surface N atoms, and the adsorption energy of K atoms is -0.93 eV. It was shown that adsorption of potassium atoms leads to the formation of surface states, the electron density of which is localized near the Fermi level. Keywords: AlN, potassium, adsorption, electronic structure.
- H. Yang, J. Sun, H. Wang, H. Li, B. Yang. J. Alloys and Compounds, 989, 174330 (2024). DOI: 10.1016/j.jallcom.2024.17433
- R. Yu, G. Liu, G. Wang, C. Chen, M. Xu, H. Zhou, T. Wang, J. Yu, G. Zhaof, L. Zhang. J. Mater. Chem. C 9, 6, 1852 (2021). DOI: 10.1039/d0tc04182c
- N. Li, C.P. Ho, S. Zhu, Y.H. Fu, Y. Zhu, L. Yao, T. Lee. Nanophotonics 10, 9, 2347 (2021). DOI: 10.1515/nanoph-2021-0130
- S.D.T. Haider, M.A. Shah,, D.-G. Lee, S. Hur. IEEE Acess 11, 58779 (2023). DOI: 10.1109/ACCESS.2023.3276716
- W. Fang, Q. Li, J. Li, Y. Li, Q. Zhang, R. Chen, M. Wang, F. Yun, T. Wang. Crystals, 13, 6, 915 (2023). DOI: 10.3390/cryst13060915
- S. Hagedorn, S. Walde, A. Knauer, N. Susilo, D. Pacak, L. Cancellara, C. Netzel, A. Mogilatenko, C. Hartmann, T. Wernicke, M. Kneissl, M. Weyers. Phys. Status Solidi A 217, 1901022 (2020). DOI: 10.1002/pssa.201901022
- G. Wang, H. Yuan, A. Kuang, W. Hu, G. Zhang, H. Chen. Int. J. hydrogen energy 39, 8, 3780 (2014). DOI: 10.1016/j.ijhydene.2013.12.13
- Y.S. Wang, P.F. Yuan, M. Li, Q. Sun, Y. Jia. Chin. Phys. Lett. 28, 11, 116801 (2011) DOI: 10.1088/0256-307X/28/11/116801
- P. Weichi, L. Haiyang, Z. Xuejing, Z. Wenming, S. Ebrahimi. Phys. Lett. A 384, 18, 126396 (2020). DOI: 10.1016/j.physleta.2020.126396
- V.M. Bermudez. Surf. Sci. Rep. 72, 4, 147 (2017). DOI: 10.1016/j.surfrep.2017.05.001
- L. Liu, Y. Diao. Mater. Sci. Semicond. Processing 132, 105899 (2021). DOI: doi.org/10.1016/j.mssp.2021.105899
- A. Sengupta. Appl. Surf. Sci. 451. 141 (2018). DOI: 10.1016/j.apsusc.2018.04.264
- H. Anaraki-Ardakani. Phys. Lett. A. 381, 11, 1041 (2017). DOI: 10.1016/j.physleta.2017.01.010
- S. Sarikurt. Eski sehir Techn. Univer. J. Sci. Technol. A --- Appl. Sci. Eng. 2019, 20, 4, 436 (2019). DOI: 10.18038/estubtda.513854
- S. Munsif, K. Ayub. J. Molec. Liq. 259, 249 (2018). DOI: 10.1016/j.molliq.2018.03.009
- S.N. Timoshnev, G.V. Benemanskaya. Phys. Complex Syst. 3, 1, 21 (2022). DOI: 10.21883/SC.2022.06.53534.9821a
- G.V. Benemanskaya, S.N. Timoshnev, G.N. Iluridze, T.A. Minashvili. Semicond. 56, 6, 387 (2022). DOI: 10.33910/2687-153X-2022-3-1-21-24
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys.: Condens. Matter 21, 39, 395502 (2009). DOI: 10.1088/0953-8984/21/39/395502
- J.P. Perdew, A. Zunger. Phys. Rev. B 23, 10, 5048 (1981). DOI: 10.1103/PhysRevB.23.5048
- V.M. Bermudez, T.M. Jung, K. Doverspike, A.E. Wickenden. J. Appl. Phys. 79, 1, 110 (1996). DOI: 10.1063/1.360917
- G. Matin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morko c. Appl. Phys. Let. 65, 5, 610 (1994). DOI: 10.1063/1.112247
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.