Dubitskiy N. V.
1,2, Baydikova V. A.
1,3, Petrzhik A. M.
1, Moskal I. E.
1, Shadrin A. V.
1,4, Shmakov V. A.
1, Ovsyannikov G. A.
11Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2National Research University "Higher School of Economics", Faculty of Physics, Moscow, Russia
3MIREA - Russian Technological University, Moscow, Russia
4Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: nikita.dubitskiy@gmail.com, baydikova2001@mail.ru, petrzhik@hitech.cplire.ru, ivan.moskal@yandex.ru, anton_sh@hitech.cplire.ru, shmakov-va@hitech.cplire.ru, gena@hitech.cplire.ru
Epitaxial strontium iridate (SrIrO3) thin films were fabricated by RF magnetron sputtering on single-crystal substrates: (110)NdGaO3, (001)SrTiO3, (001)(LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT), and (110)Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT). X-ray diffraction techniques were used to investigate structural characteristics and the effect of strain in thin films induced by lattice parameter mismatch between the film and substrate. Analysis of diffraction data reveals changes in the unit cell volume compared to the orthorhombic phase of SrIrO3 crystal in pseudocubic representation. Electronic transport parameters of SrIrO3 thin films exhibit significant dependence on the substrate and deposition conditions. Temperature-dependent resistance analysis revealed the effect of magnetic impurity scattering, attributed to oxygen vacancies, on the electronic transport properties of the films. X-ray photoelectron spectroscopy measurements determined the spin-orbit splitting energy for the Ir 4f core level, which varies from 2.99 eV for the SrIrO3 film on (001)SrTiO3 to 3.10 eV for the SrIrO3 film on (110)PMN-PT which correlates with oxygen vacancy concentration, structural perfection, and stoichiometry. Keywords: SrIrO3 thin films, epitaxial growth, lattice mismatch, oxygen vacancies, electronic transport.
- S. Sardar, M. Vagadia, T.M. Tank, J. Sahoo, D.S. Rana. J. Appl. Phys. 135, 8 (2024)
- H. Chen, D. Yi. APL Mater. 9, 6 (2021)
- J.M. Longo, J.A. Kafalas, R.J. Arnott. J. Solid State Chem. 3, 2, 174 (1971)
- J. Liu, D. Kriegner, L. Horak, D. Puggioni, C. Rayan Serrao, R. Chen, D. Yi, C. Frontera, V. Holy, A. Vishwanath, J.M. Rondinelli, X. Marti, R. Ramesh. Phys. Rev. B 93, 8, 085118 (2016)
- B.L. Chamberland, A.R. Philpotts. J. Alloys Compd. 182, 2, 355 (1992)
- G. Cao, P. Schlottmann. Rep. Prog. Phys. 81, 4, 042502 (2018)
- S.J. Moon, H. Jin, K.W. Kim, W.S. Choi, Y.S. Lee, J. Yu, T.W. Noh. Phys. Rev. Lett. 101, 22, 226402 (2008)
- Z.T. Liu, M.Y. Li, Q.F. Li, J.S. Liu, W. Li, H.F. Yang, D.W. Shen. Sci. Rep. 6, 1, 30309 (2016)
- J.H. Gruenewald, J. Nichols, J. Terzic, G. Cao, J.W. Brill, S.S.A. Seo. J. Mater. Res. 29, 21, 2491 (2014)
- L. Horak, D. Kriegner, J. Liu, C. Frontera, X. Marti, V. Holy. J. Appl. Crystallogr. 50, 2, 385 (2017)
- B. Kim, B.H. Kim, K. Kim, B.I. Min. Sci. Rep. 6, 1, 27095 (2016)
- I.E. Moskal, A.M. Petrzhik, Yu.V. Kislinskii, A.V. Shadrin, G.A. Ovsyannikov, N.V. Dubitskiy. Bulletin of the Russian Academy of Sciences: Physics. 88, 4, 581 (2024)
- V. Fuentes, L. Balcells, Z. Konstantinovic, B. Marti nez, A. Pomar. Nanomaterials 14, 3, 242 (2024)
- S.S. Li, Y. Zhang, J.S. Ying, Z.C. Wang, J.M. Yan, G.Y. Gao, R.K. Zheng. J. Appl. Phys. 133, 1 (2023)
- I.E. Moskal, Yu.V. Kislinskii, A.M. Petrzhik, G.A. Ovsyannikov, N.V. Dubitskiy. Physics of the Solid State. 66, 7, 1063 (2024)
- Y.V. Kislinskii, K.Y. Constantinian, I.E. Moskal, N.V. Dubitskiy, A.M. Petrzhik, A.V. Shadrin, G.A. Ovsyannikov. Russian Microelectronics 52, Suppl 1, S53 (2023)
- A. Biswas, Y.H. Jeong. Curr. Appl. Phys. 17, 5, 605 (2017)
- K. Nishio, H.Y. Hwang, Y. Hikita. APL Mater. 4, 036102 (2016)
- A. Gutierrez-Llorente, L. Iglesias, B. Rodri guez-Gonzalez, F. Rivadulla. APL Mater. 6, 091101 (2018)
- G.A. Ovsyannikov, K.I. Constantinian, G.D. Ulev, A.V. Shadrin, P.V. Lega, A.P. Orlov. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 18, 1, 210 (2024)
- A. Biswas, K.S. Kim, Y.H. Jeong. J. Appl. Phys. 116, 21 (2014)
- T.J. Anderson, S. Ryu, H. Zhou, L. Xie, J.P. Podkaminer, Y. Ma, C.B. Eom. Appl. Phys. Lett. 108, 15 (2016)
- D. Cui, Y. Xu, L. Zhou, L. Zhang, Z. Luan, C. Li, D. Wu. Appl. Phys. Lett. 118, 5 (2021)
- L. Fruchter, O. Schneegans, Z.Z. Li. J. Appl. Phys. 120, 7 (2016)
- L. Zhang, Q. Liang, Y. Xiong, B. Zhang, L. Gao, H. Li, Y.F. Chen. Phys. Rev. B 91, 3, 035110 (2015)
- H.C. Montgomery. J. Appl. Phys. 42, 7, 2971 (1971)
- W. Zhao, M. Gu, D. Xiao, Q. Li, X. Liu, K. Jin, J. Guo. Phys. Rev. Mater. 8, 10, 105001 (2024)
- S. Suresh, S.P.P. Sadhu, V. Mishra, W. Paulus, M.R. Rao. J. Phys.: Condens. Matter 36, 42, 425601 (2024)
- Yu.V. Kislinskii, G.A. Ovsyannikov, A.M. Petrzhik, K.Y. Constantinian, N.V. Andreev, T.A. Sviridova. Physics of the Solid State. 57, 12, 2519 (2015)
- V.A. Baydikova, N.V. Dubitskiy, I.E. Moskal, G.A. Ovsyannikov, A.M. Petrzhik, G.D. Ulev, K.Y. Constantinian, Yu.V. Kislinskii, A.V. Shadrin. Radioelectronics. Nanosystems. Information Technologies. 16, 4, 509 (2024)
- G. Rimal, T. Tasnim, G. Calderon Ortiz, G.E. Sterbinsky, J. Hwang, R.B. Comes. Phys. Rev. Mater. 8, 7, L071201 (2024)
- R. Choudhary, S. Nair, Z. Yang, D. Lee, B. Jalan. APL Mater. 10, 9 (2022)
- N.K. Chumakov, I.A. Chernykh, A.B. Davydov, I.S. Ezubchenko, Y.V. Grishchenko, L.L. Lev, M.L. Zanaveskin. Semiconductors. 54, 9, 1150 (2020)
- D. Fuchs, A.K. Jaiswal, F. Wilhelm, D. Wang, A. Rogalev, M.L. Tacon. arXiv preprint arXiv:2502.02985 (2025)
- W. Surta, S. Almalki, Y.X. Lin, T. Veal, M. O'Sullivan. arXiv preprint:2406.01845 (2024)
- V. Fuentes, B. Vasic, Z. Konstantinovi, B. Martinez, L. Balcells, A. Pomar. J. Magn. Magn. Mater. 501, 166419 (2020).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.