Shift of resonance frequencies of Stokes and anti-Stokes lines in Mandelstam-Brillouin spectra with changing interface in NiFe/Spacer/IrMn exchange-biased thin films
Bakhmetiev M. V.1, Sadovnikov A. V.2, Gubanov V. A.2, Savin V. V.3, Morgunov R. B.1,4
1Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Сhernogolovka, Russia
2Saratov State University, Saratov, Russia
3Immanuel Kant Baltic Federal University, Kaliningrad, Russia
4Tambov State Technical University, Tambov, Russia
Email: spintronics2022@yandex.ru
Spin-waves in NiFe/Cu/IrMn and NiFe/Ta/IrMn heterostructures with variable thickness of copper and tantalum interlayers were studied by Brillouin Light Scattering (BLS). Resonance frequencies of the Stokes and anti-Stokes lines shift upon inversion of the external magnetic field. When the percolation threshold is reached in the interlayer, the sign of the frequency shift changes and remains negative until a continuous coating is achieved. Complete rupture of the direct exchange contact between the NiFe and IrMn layers by the non-magnetic material of the interlayer leads to a zero shift of the resonant scattering frequencies. Changes in the resonant frequencies of spin-wave scattering characterize the quality of the NiFe/Spacer/IrMn interface, the fractal dimension of which corresponds to the three-dimensional structure.. Keywords: Exchange bias, spacer, Mandelstam-Brillouin scattering spectra, shift of scattering resonance frequencies.
- R.L. Stamps. J. Phys. D: Appl. Phys. 34, 3, 444 (2001)
- P.K. Manna, S.M. Yusuf. Phys. Rep. 535, 2, 61 (2014)
- V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak. Rev. Mod. Phys. 90, 1, 015005 (2018)
- Y. Guo, Y. Ouyang, N. Sato, C.C. Ooi, S.X. Wang. IEEE Sensors 17, 11, 3309 (2017)
- A. Elzwawy, H. Piskin, N. Akdogan, M. Volmer, G. Reiss, L. Marnitz, A. Moskaltsova, O. Gurel, J.-M. Schmalhorst. J. Phys. D: Appl. Phys. 54, 35, 353002 (2021)
- S.M. Rezende, A. Azevedo, M.A. Lucena, F.M. de Aguiar. Phys. Rev. B 63, 21, 214418 (2001)
- R.L. Rodriguez-Suarez, L.H. Vilela-Leao, T. Bueno, A.B. Oliveira, J.R.L. Almeida, P. Landeros, S.M. Rezende, A. Azevedo. Phys. Rev. B 83, 22, 224418 (2011)
- L. Thomas, A.J. Kellock, S.S.P. Parkin. J. Appl. Phys. 87, 9, 5061 (2000)
- J. Sort, F. Garcia, B. Rodmacq, S. Auffret, B. Dieny. J. Magn. Magn. Mater. 272-276, Part 1, 355 (2004)
- K. Li, Z. Guo, G. Han, J. Qiu, Y. Wu. J. Appl. Phys. 93, 10, 6614 (2003)
- A.D. Henriksen, G. Rizzi, M.F. Hansen. J. Appl. Phys. 119, 9, 093910 (2016)
- E. Byon, T.W.H. Oates, A. Anders. Appl. Phys. Lett. 82, 10, 1634 (2003)
- M.V. Bakhmetiev, A.D. Talantsev, R.B. Morgunov. JETP 132, 5, 852 (2021)
- C.-W. Nan, Y. Shen, J. Ma. Annu. Rev. Mater. Res. 40, 131 (2010)
- I.J. Youngs. J. Phys. D: Appl. Phys. 35, 23, 3127 (2002)
- Q. Li, T. Li, J. Wu. J. Colloid Interface Sci. 239, 2, 522 (2001)
- N.I. Lebovka, S. Tarafdar, N.V. Vygornitskii. Phys. Rev. E 73, 3, 031402 (2006)
- D.S. McLachlan, C. Chiteme, W.D. Heiss, J. Wu. Physica B 338, 1-4, 261 (2003)
- P. Miltenyi, M. Gruyters, G. Guntherodt, J. Nogues, I.K. Schuller. Phys. Rev. B 59, 5, 3333 (1999)
- C. Mathieu, M. Bauer, B. Hillebrands, J. Fassbender, G. Guntherodt, R. Jungblut, J. Kohlhepp, A. Reinders. J. Appl. Phys. 83, 5, 2863 (1998)
- R.L. Rodriguez-Suarez, A.B. Oliveira, F. Estrada, D.S. Maior, M. Arana, O. Alves Santos, A. Azevedo, S.M. Rezende. J. Appl. Phys. 123, 4, 043901 (2018)
- M. Bakhmetiev, A. Talantsev, A. Sadovnikov, R. Morgunov. J. Phys. D: Appl. Phys. 55, 10, 105001 (2022)
- R.B. Morgunov, M.V. Bakhmetiev, A.D. Talantsev. Phys. Solid State 62, 11, 1991 (2020)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.