Impedance and dielectric spectra under alternating excitation of quasi-binary system of intercalated phases (Ag,Cu)-HfSe2
Pleshchev V. G.
11Institute of Natural Sciences, Ural Federal University named after B.N. Yeltsin, Yekaterinburg, Russia
Email: v.g.pleshchev@urfu.ru
Relaxation processes during charge transfer and dipole polarization change under alternating excitation in hafnium diselenide when it is intercalated with atoms of two varieties CuxAgyHfSe2 at (x+y)≤0.2 have been studied by impedance spectroscopy. Based on the results of studies by impedance spectroscopy, relaxation processes in the system of mobile charge carriers were analyzed depending on the total content of intercalated atoms and the ratio of the number of atoms of different grades. The dielectric characteristics of this system were analyzed for the first time. It is shown that at significant growth of dielectric permittivity in the region of low frequencies more informative for the analysis of dielectric relaxation is the use of the dielectric modulus formalism, on the basis of which the dielectric relaxation times are estimated. These times turned out to be smaller in comparison with the values determined from the frequency dependences of the imaginary part of the complex impedance. Keywords: silver, copper, intercalation, hafnium diselenide, relaxation times, dielectric constant, electrical modulus.
- J. Shi, M. Hong, Z. Zhang, Q. Ji. Coord. Chem. Rev. 376, 7, 1--19 (2018). DOI: 10.1016/j.ccr.2018.07.019
- L. Song, H. Li, Y. Zhang, J. Shi. J. Appl. Phys. 131, 11, 060902 (2022). https://doi.org/10.1063/5.0083929
- A. Yu.Ledneva, G.E.Tchebanova, S.B.Artemkina, A.N.Lavrov. Zhurnal strukturnoj khimii 63, 2, 109--162 (2022). (in Russian). DOI: 10.26902/JSC_id87109
- C.K. Sumesh, K.D. Patel, V.M. Pathak, R. Srivastava. J. Electron Dev. 8, 324 (2010)
- K.E. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou, S.A. Giamini, E. Vassalou, N. Kelaidis, A. Dimoulas. Appl. Phys. Lett. 106, 143105 (2015). DOI: 10.1063/1.4917422
- L.A. Chernozatonsky, A.A. Artyukh. UFN 188, 1, 3 (2018). (in Russian). DOI: 10.3367/UFNr.2017.02.038065
- P. Katzke, W. Toledano, W. Depmeier. Phys. Rev. B 69, 134111 (2004). https://doi.org/10.1103/PhysRevB.69.134111
- Yu.A. Gurevich. Tverdyye elektrolity. M: Nauka, 1986). 173 p. (in Russian)
- A.H. Reshak. J. Phys. Chem. A 113, 8, 1635--1645 (2009). DOI: 10102/jp810242w
- V.G. Pleshchev, N.V. Selezneva, N.V. Baranov. Phys. Solid State, 55, 7, 1377 (2013). doi:10.1134/S1063783413070238
- V.G. Pleshchev, N.V. Selezneva, N.V. Baranov. Phys. Solid State 55, 1, 21 (2013). (DOI) 10.1134/S1063783413010253
- V.G. Pleshchev, N.V. Selezneva, N.V. Melnikova, N.V. Baranov. Phys. Solid State 54, 7, 1348 (2012). doi:10.1134/S1063783412070293
- V.G. Pleshchev. Phys. Solid State 64, 10, 1420 (2022). DOI: 10.21883/PSS.2022.10.54230.317
- V.G. Pleshchev. Phys. Solid State 65, 2, 224 (2023). doi: 10.21883/PSS.2023.02.55404.520
- V.G. Pleshchev. Phys. Solid State 67, 1, 130 (2025). doi: 10.61011/PSS.2025.01.60591.278
- V.G. Pleshchev, N.V. Selezneva, N.V. Baranov. FTT 55, 1, 14 (2013). (in Russian)
- V.G. Pleshchev, N.V. Selezneva, N.V. Melnikova, N.V. Baranov. FTT 54, 7, 1271 (2012). (in Russian)
- V.G. Pleshchev. FTT 64, 10, 1447 (2022). (in Russian). DOI: 10.21883/FTT.2022.10.53088.317
- V.G. Pleshchev. FTT 65, 2, 232 (2023). (in Russian). DOI: 10.21883/FTT.2023.02.54295.520
- V.G. Pleshchev. FTT 67, 1, 132 (2025). (in Russian). DOI: 10.61011/FTT.2025.01.59779.278
- N.A. Poklonsky, N.I. Gorbachuk. Osnovy impedansnoy spektroskopii kompozitov. Izd-vo BGU, Minsk (2005). 50 p. (in Russian)
- E. Barsoukov, J.R. Macdonald. Impedance spectroscopy: theory, experiment and applications. John Wiley \& Sons Inc., N.J. (2005). 595 p
- M.Yu. Seyidov, R.A. Suleymanov, Y. Bakis, F. Salehli. J. Appl. Phys. 108, 7, 074114(5) (2010). DOI: 10.1063/1.3486219
- N.D. Gavrilova, A.M. Lotonov, A.A. Davydova. Vestnik Moskovskogo universiteta. Seriya 3. Fizika. Astronomiya, 1, 45 (2013). (in Russian)
- M.A. Kudryashov, A.I. Mashin, A.A. Logunov, G. Chidichimo, G. De Filpo. ZhTF 84, 7, 67 (2014). (in Russian).
- M.M. Costa, G.F.M. Pires, Jr., A.J. Terezo, M.P.F. Graca, S.B. Sombra. J. Appl. Phys. 110, 034107 (2011). DOI: 10.1063/1.3615935
- P.K. Karahaliou, N. Xanthopoulos, S. Georga. Physica Scripta 86, 6, 065703 (2012). DOI: 10.1088/0031-8949/86/06/065703
- S.R. Elliott. J. Non-Cryst. Solids. 170, 1, 97 (1994). doi.org/10.1016/0022-3093(94)90108-2
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.