Physics of the Solid State
Volumes and Issues
Impedance and dielectric spectra under alternating excitation of quasi-binary system of intercalated phases (Ag,Cu)-HfSe2
Pleshchev V. G. 1
1Institute of Natural Sciences, Ural Federal University named after B.N. Yeltsin, Yekaterinburg, Russia
Email: v.g.pleshchev@urfu.ru

PDF
Relaxation processes during charge transfer and dipole polarization change under alternating excitation in hafnium diselenide when it is intercalated with atoms of two varieties CuxAgyHfSe2 at (x+y)≤0.2 have been studied by impedance spectroscopy. Based on the results of studies by impedance spectroscopy, relaxation processes in the system of mobile charge carriers were analyzed depending on the total content of intercalated atoms and the ratio of the number of atoms of different grades. The dielectric characteristics of this system were analyzed for the first time. It is shown that at significant growth of dielectric permittivity in the region of low frequencies more informative for the analysis of dielectric relaxation is the use of the dielectric modulus formalism, on the basis of which the dielectric relaxation times are estimated. These times turned out to be smaller in comparison with the values determined from the frequency dependences of the imaginary part of the complex impedance. Keywords: silver, copper, intercalation, hafnium diselenide, relaxation times, dielectric constant, electrical modulus.
  1. J. Shi, M. Hong, Z. Zhang, Q. Ji. Coord. Chem. Rev. 376, 7, 1--19 (2018). DOI: 10.1016/j.ccr.2018.07.019
  2. L. Song, H. Li, Y. Zhang, J. Shi. J. Appl. Phys. 131, 11, 060902 (2022). https://doi.org/10.1063/5.0083929
  3. A. Yu.Ledneva, G.E.Tchebanova, S.B.Artemkina, A.N.Lavrov. Zhurnal strukturnoj khimii 63, 2, 109--162 (2022). (in Russian). DOI: 10.26902/JSC_id87109
  4. C.K. Sumesh, K.D. Patel, V.M. Pathak, R. Srivastava. J. Electron Dev. 8, 324 (2010)
  5. K.E. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou, S.A. Giamini, E. Vassalou, N. Kelaidis, A. Dimoulas. Appl. Phys. Lett. 106, 143105 (2015). DOI: 10.1063/1.4917422
  6. L.A. Chernozatonsky, A.A. Artyukh. UFN 188, 1, 3 (2018). (in Russian). DOI: 10.3367/UFNr.2017.02.038065
  7. P. Katzke, W. Toledano, W. Depmeier. Phys. Rev. B 69, 134111 (2004). https://doi.org/10.1103/PhysRevB.69.134111
  8. Yu.A. Gurevich. Tverdyye elektrolity. M: Nauka, 1986). 173 p. (in Russian)
  9. A.H. Reshak. J. Phys. Chem. A 113, 8, 1635--1645 (2009). DOI: 10102/jp810242w
  10. V.G. Pleshchev, N.V. Selezneva, N.V. Baranov. Phys. Solid State, 55, 7, 1377 (2013). doi:10.1134/S1063783413070238
  11. V.G. Pleshchev, N.V. Selezneva, N.V. Baranov. Phys. Solid State 55, 1, 21 (2013). (DOI) 10.1134/S1063783413010253
  12. V.G. Pleshchev, N.V. Selezneva, N.V. Melnikova, N.V. Baranov. Phys. Solid State 54, 7, 1348 (2012). doi:10.1134/S1063783412070293
  13. V.G. Pleshchev. Phys. Solid State 64, 10, 1420 (2022). DOI: 10.21883/PSS.2022.10.54230.317
  14. V.G. Pleshchev. Phys. Solid State 65, 2, 224 (2023). doi: 10.21883/PSS.2023.02.55404.520
  15. V.G. Pleshchev. Phys. Solid State 67, 1, 130 (2025). doi: 10.61011/PSS.2025.01.60591.278
  16. V.G. Pleshchev, N.V. Selezneva, N.V. Baranov. FTT 55, 1, 14 (2013). (in Russian)
  17. V.G. Pleshchev, N.V. Selezneva, N.V. Melnikova, N.V. Baranov. FTT 54, 7, 1271 (2012). (in Russian)
  18. V.G. Pleshchev. FTT 64, 10, 1447 (2022). (in Russian). DOI: 10.21883/FTT.2022.10.53088.317
  19. V.G. Pleshchev. FTT 65, 2, 232 (2023). (in Russian). DOI: 10.21883/FTT.2023.02.54295.520
  20. V.G. Pleshchev. FTT 67, 1, 132 (2025). (in Russian). DOI: 10.61011/FTT.2025.01.59779.278
  21. N.A. Poklonsky, N.I. Gorbachuk. Osnovy impedansnoy spektroskopii kompozitov. Izd-vo BGU, Minsk (2005). 50 p. (in Russian)
  22. E. Barsoukov, J.R. Macdonald. Impedance spectroscopy: theory, experiment and applications. John Wiley \& Sons Inc., N.J. (2005). 595 p
  23. M.Yu. Seyidov, R.A. Suleymanov, Y. Bakis, F. Salehli. J. Appl. Phys. 108, 7, 074114(5) (2010). DOI: 10.1063/1.3486219
  24. N.D. Gavrilova, A.M. Lotonov, A.A. Davydova. Vestnik Moskovskogo universiteta. Seriya 3. Fizika. Astronomiya, 1, 45 (2013). (in Russian)
  25. M.A. Kudryashov, A.I. Mashin, A.A. Logunov, G. Chidichimo, G. De Filpo. ZhTF 84, 7, 67 (2014). (in Russian).
  26. M.M. Costa, G.F.M. Pires, Jr., A.J. Terezo, M.P.F. Graca, S.B. Sombra. J. Appl. Phys. 110, 034107 (2011). DOI: 10.1063/1.3615935
  27. P.K. Karahaliou, N. Xanthopoulos, S. Georga. Physica Scripta 86, 6, 065703 (2012). DOI: 10.1088/0031-8949/86/06/065703
  28. S.R. Elliott. J. Non-Cryst. Solids. 170, 1, 97 (1994). doi.org/10.1016/0022-3093(94)90108-2

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru