Calorimetry of amorphous alloy crystallization processes based on quasi-binary system TiNi-TiCu
Spivak L. V.
1, Shchepina N. E.
2, Grebenkov S. K.
11Perm Research Polytechnic University, Perm, Russia
2Perm State University, Perm, Russia
Email: lspivak2@mail.ru, neshchepina@mail.ru, drive@rtural.ru
The effect of the degree of polynomial smoothing of experimental data from differential scanning calorimetry of amorphous metal alloys Ti50Ni25Cu25, Ti30.2Ni49.8Hf20, Ti40.5Ni49.8Zr9.7, Ti50.2Ni24.8Cu24.4Al0.6, Ti50.2Ni24.8Cu24.4Fe0.6 at the defined values of exothermic effects in crystallization was studied. It was shown that the values of thermodynamic parameters obtained from this data practically do not depend on the degree of polynomial smoothing. However, such procedure does impact, and quite substantially, the kinetic characteristics of the crystallization process of amorphous metal-metal alloys when they are heated. Enthalpy of the crystallization process of such alloys turned out to be by an order less that in regular crystallization of the alloys of the same composition. The start of crystallization of these alloys may formally be described by peaking-type functions, which characterizes the initial process of crystallization as spontaneous and fast. Introduction of hard-melting components in the composition, such as Hf and Zr, somewhat suppress this trend. It is essential that upon crystallization of amorphous alloys based on the quasi-binary system TiNi-TiCu the temperatures of maximum rate of crystallization center origination and maximum rate of their growth practically coincide with each other, which is not observed during normal crystallization from alloys. Keywords: amorphous state, enthalpy, entropy, peaking-type functions.
- S.H. Chang, S.K. Wu, H. Kimura. Intermetallics 15, 3, 233 (2007)
- N.N. Sitnikov, A.V. Shelyakov, R.V. Sundeev, I.A. Khabibullina. FTT 62, 5, 649 (2020). (in Russian). https://doi.org/10.21883/FTT.2020.05.49223 [N.N. Sitnikov, A.V. Shelyakov, R.V. Sundeev, I.A. Khabibullina. Phys. Solid State 62, 5, 733 (2020).]
- A. Shelyakov, N. Sitnikov, I. Zaletova, K. Borodako, N. Tabachkova. Metals 13, 7, 1175 (2023). https://doi.org/10.3390/met13071175
- A. Glezer, N. Sitnikov, R. Sundeev, A. Shelyakov, I. Khabibullina. Mater. 12, 17, 2670 (2019). https://doi.org/10.3390/ma12172670
- A.V. Shelyakov, N.N. Sitnikov, I.A. Zaletova, S.A. Eroshenkov, N. Sevryukov. J. Phys. Conf. Ser. 2056, 1, 012042 (2021). https://doi.org/10.1088/1742-6596/2056/1/012042
- K. Suzuki, H. Fujimori, K. Hashimoto. Materials Science of Amorphous Metals. Ohm-sha, Tokyo (1982)
- L.V. Spivak, A.V. Shelyakov. Bull. RAN. Ser. Phys. 73, 9, 1266 (2009)
- D.V. Louzguine-Luzgin. Mater. 17, 14, 3573 (2024). https://doi.org/10.3390/ma17143573
- S.M. Sarge, G.W.H. Hohne, W.F. Hemminger. Calorimetry. Fundamentals Instrumentation and Applications. Wiley-VCH Verlag GmbH \& Co. KGaA: Weinheim, Germany (2014). 304 p
- H.E. Kissinger. Analytical Chem. 29, 11, 1702 (1957). https://doi.org/10.1021/ac60131a045
- A.M. Gleser, I.E. Permyakova. Materialovedenie 6, 30 (2006). (in Russian)
- P.J. Van Ekeren. In: Handbook of Thermal Analysis and Calorimetry, v. l / Ed. M.E. Brown. Elsevier Science B.V. (1998). P. 75--83
- Introduction to thermal analysis / Ed. M.E. Brown. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow (2001). 264 p
- V.A. Aleshkevich. Molekulyarnaya fizika. Fizmatlit, M. (2016). 307 s. (in Russian)
- J. Piatkowski, V. Przeliorz, V. Szymszal. Archives. Foundry Eng. 17, 2, 207 (2017)
- J. vSestak. Thermophysical Properties of Solids, Their Measurements Theoretical and Theoretical Thermal Analysis. Elsevier, Amsterdam (1984). 440 p
- A.K. Galwey, M.E. Brown. Handbook of Thermal Analysis and Calorimetry, v. 1. Principles and Practice / Ed. M.E. Brown. Elsevier Science B.V. (1998). 147 p
- K. Hono, D.H. Ping. Mater. Characterization 44, 1-2, 203 (2000)
- E.S. Kurkina, E.N. Knyazev. Izv. vuzov. PND 21, 4, 135 (2013). (in Russian). https://doi.org/10.18500/0869-6632-2013-21-4-135-217
- Smithells Metals Reference Book, 8th ed. / Eds W.F. Gale, T.C. Totemeier. Elsevier Butterworth-Heinemann (2004). 2080 p
- E. Jakubczyk, L. Krajezyk, P. Siemion, M. Jakubczyk. Optica Applicata 37, 4, 359 (2007)
- K. Yang, B. Li, X.-H. Fan, X. Wang. J. Therm. Anal. Calorim. 148, 3, 689 (2023). https://doi.org/10.1007/s10973-022-11778-7
- L.V. Spivak, N.E. Shchepina. Phys. Solid State 61, 8, 1347 (2019)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.