Ab initio electro-optical properties crucial to the parity-changing vibrational Raman scattering by gaseous carbon dioxide
Kouzov A. P.1, Chistikov D. N.2, Finenko A. A.2,3
1St. Petersburg State University, St. Petersburg, Russia
2A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
3Lomonosov Moscow State University, Moscow, Russia
Email: a.kouzov@spbu.ru
By applying various schemes of the DALTON program suite, the derivatives of the dipole-quadrupole (A) and dipole-magnetic dipole (G) polarizabilities by the asymmetric stretching coordinate of CO2 are derived. The G derivative was calculated for the first time whereas the obtained cartesian components of A favourably agree with the available up-to-date values. Based on the thus derived electro-optical parameters, we provide estimations of the intensity of the forbidden vibrational ν3 CO2 Raman transition in CO2 which show the leading role of the magnetic elects. The results might be guiding to detect and to quantitatively interpret this novel, vibrational parity-changing Raman process. Keywords: molecular electrooptics, forbidden vibrational Raman spectra of carbon dioxide gas.
- G. Herzberg. Nature, 163, 170 (1949). DOI: 10.1038/163170a0
- A. Goldman, J. Reid, L.S. Rothman. Geophys. Res. Lett., 8, 77 (1981). DOI: 10.1029/GL008i001p00077
- L.S. Rothman, A. Goldman. Applied Optics, 20, 2182 (1981). DOI: 10.1364/ao.20.002182
- K. Narahari Rao, M.E. Mickelson, J.T. Trauger. J. Mol. Struct., 217, 85 (1990). DOI: 10.1016/0022-2860(90)80353-L
- S. Kassi, A. Campargue. J. Chem. Phys., 137, 234201 (2012). DOI: 10.1063/1.4769974
- J.H. Van Vleck. Phys. Rev., 71, 413 (1947). DOI: 10.1103/PhysRev.71.413
- A. Trokhimovskiy, V. Perevalov, O. Korablev, A.A. Fedorova, K.S. Olsen, J.-L. Bertaux, A. Patrakeev, A. Shakun, F. Montmessin, F. Lefevre, A. Lukashevskaya. Astron. and Astrophys., 639, A142 (2020). DOI: 10.1051/0004-6361/202038134
- D.N. Chistikov. J. Chem. Phys., 158, 134307 (2023). DOI: 10.1063/5.0144201
- L.D. Barron. Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004)
- A.D. Buckingham, R.L. Disch, D.A. Dunmu. J. Am. Chem. Soc., 90, 3104 (1968). DOI: 10.1021/ja01014a023
- A.D. Buckingham. J. Chem. Phys., 30, 1580 (1959). DOI: 10.1063/1.1730242
- A.D. Buckingham, R.A. Shatwell. Phys. Rev. Lett., 45, 21 (1980). DOI: 10.1103/PhysRevLett.45.21
- G. Maroulis. Theor. Chim. Acta, 84, 245 (1992). DOI: 10.1007/BF01113211
- A. Rizzo, S. Coriani, A. Halkier, C. Hattig. J. Chem. Phys., 113, 3077 (2000). DOI: 10.1063/1.1287057
- A.D. McLean, M. Yoshimine. J. Chem. Phys., 46, 3682 (1967). DOI: 10.1063/1.1841276
- R.D. Amos. Chem. Phys. Lett., 70, 613 (1980). DOI: 10.1016/0009-2614(80)80137-0
- G.S. Kedziora, G.C. Schatz, Spectrochim. Acta A, 55, 625 (1999). DOI: 10.1016/S1386-1425(98)00266-2
- YingNan Chiu. J. Chem. Phys., 52, 3641 (1970). DOI: 10.1063/1.1673538
- N. Egorova, A. Kouzov, M. Chrysos, F. Rachet. J. Raman Spectrosc., 36, 153 ( 2005). DOI: 10.1002/jrs.1284
- M.A. Morrison. P.J. Hay. J. Chem. Phys., 70, 4034 (1979). DOI: 10.1063/1.438025
- R.D. Amos, A.D. Buckingham, J.H. Williams. Mol. Phys., 39, 1519 (1980). DOI: 10.1080/00268978000101251
- A. Haskopoulos, G. Maroulis. Chem. Phys. Lett., 417, 235 (2006). DOI: 10.1016/j.cplett.2005.10.023
- K. Aidas, C. Angeli, K.L. Bak, et al. WIREs Comput. Mol. Sci., 4, 269 (2014). DOI: 10.1002/wcms.1172
- D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii. Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)
- A.P. Kouzov, M. Chrysos, F. Rachet, N.I. Egorova. Phys. Rev. A, 74, 012723 (2006). DOI: 10.1103/PhysRevA.74.012723
- D.A. Long. The Raman Effect (Wiley \& Sons Ltd, Chichester, UK, 2002)
- R.D. Amos. Chem. Phys. Lett., 87, 23 (1982). DOI: 10.1016/0009-2614(82)83545-8
- Dalton, a molecular electronic structure program, Release v2020.1, [Electronic media]. URL: http://daltonprogram.org
- T.H. Dunning. J. Chem. Phys., 90, 1007 (1989). DOI: 10.1063/1.456153
- D.E. Woon, T.H. Dunning Jr. J. Chem. Phys., 103, 4572 (1995). DOI: 10.1063/1.470645
- K.A. Peterson, T.H. Dunning. J. Chem. Phys., 117, 10548 (2002). DOI: 10.1063/1.1520138
- O. Christiansen, A. Halkier, H. Koch, T. Helgaker. J. Chem. Phys., 108, 2801 (1998). DOI: 10.1063/1.475671
- K. Aidas, C. Angeli, K.L. Bak et al. Dalton2020.1 Dalton Program Manual [Electronic media]. URL: https://daltonprogram.org/manuals/dalton2020manual.pdf
- A. Yachmenev, A. Campargue, S.N. Yurchenko, J.K. Upper, J. Tennyson. J. Chem. Phys., 154, 211104 (2021). DOI: 10.1063/5.0053279
- T. Helgaker, K. Ruud, K.L. Bak, P. Jrgensen, J. Olsen. Faraday Discuss., 99, 165 (1994). DOI: 10.1039/FD9949900165
- T.D. Kolomiitsova, A.V. Lyaptsev, D.N. Shchepkin. Opt. Spectrosc., 88, 648 (2000). DOI: 10.1134/1.626856
- M. Chrysos, I.A. Verzhbitskiy, F. Rachet, A.P. Kouzov. J. Chem. Phys., 134, 104310 (2011). DOI: 10.1063/1.3557820
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.