Ab initio electro-optical properties crucial to the parity-changing vibrational Raman scattering by gaseous carbon dioxide
Kouzov A. P.1, Chistikov D. N.2, Finenko A. A.2,3
1St. Petersburg State University, St. Petersburg, Russia
2A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
3Lomonosov Moscow State University, Moscow, Russia
Email: a.kouzov@spbu.ru

PDF
By applying various schemes of the DALTON program suite, the derivatives of the dipole-quadrupole (A) and dipole-magnetic dipole (G) polarizabilities by the asymmetric stretching coordinate of CO2 are derived. The G derivative was calculated for the first time whereas the obtained cartesian components of A favourably agree with the available up-to-date values. Based on the thus derived electro-optical parameters, we provide estimations of the intensity of the forbidden vibrational ν3 CO2 Raman transition in CO2 which show the leading role of the magnetic elects. The results might be guiding to detect and to quantitatively interpret this novel, vibrational parity-changing Raman process. Keywords: molecular electrooptics, forbidden vibrational Raman spectra of carbon dioxide gas.
  1. G. Herzberg. Nature, 163, 170 (1949). DOI: 10.1038/163170a0
  2. A. Goldman, J. Reid, L.S. Rothman. Geophys. Res. Lett., 8, 77 (1981). DOI: 10.1029/GL008i001p00077
  3. L.S. Rothman, A. Goldman. Applied Optics, 20, 2182 (1981). DOI: 10.1364/ao.20.002182
  4. K. Narahari Rao, M.E. Mickelson, J.T. Trauger. J. Mol. Struct., 217, 85 (1990). DOI: 10.1016/0022-2860(90)80353-L
  5. S. Kassi, A. Campargue. J. Chem. Phys., 137, 234201 (2012). DOI: 10.1063/1.4769974
  6. J.H. Van Vleck. Phys. Rev., 71, 413 (1947). DOI: 10.1103/PhysRev.71.413
  7. A. Trokhimovskiy, V. Perevalov, O. Korablev, A.A. Fedorova, K.S. Olsen, J.-L. Bertaux, A. Patrakeev, A. Shakun, F. Montmessin, F. Lefevre, A. Lukashevskaya. Astron. and Astrophys., 639, A142 (2020). DOI: 10.1051/0004-6361/202038134
  8. D.N. Chistikov. J. Chem. Phys., 158, 134307 (2023). DOI: 10.1063/5.0144201
  9. L.D. Barron. Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004)
  10. A.D. Buckingham, R.L. Disch, D.A. Dunmu. J. Am. Chem. Soc., 90, 3104 (1968). DOI: 10.1021/ja01014a023
  11. A.D. Buckingham. J. Chem. Phys., 30, 1580 (1959). DOI: 10.1063/1.1730242
  12. A.D. Buckingham, R.A. Shatwell. Phys. Rev. Lett., 45, 21 (1980). DOI: 10.1103/PhysRevLett.45.21
  13. G. Maroulis. Theor. Chim. Acta, 84, 245 (1992). DOI: 10.1007/BF01113211
  14. A. Rizzo, S. Coriani, A. Halkier, C. Hattig. J. Chem. Phys., 113, 3077 (2000). DOI: 10.1063/1.1287057
  15. A.D. McLean, M. Yoshimine. J. Chem. Phys., 46, 3682 (1967). DOI: 10.1063/1.1841276
  16. R.D. Amos. Chem. Phys. Lett., 70, 613 (1980). DOI: 10.1016/0009-2614(80)80137-0
  17. G.S. Kedziora, G.C. Schatz, Spectrochim. Acta A, 55, 625 (1999). DOI: 10.1016/S1386-1425(98)00266-2
  18. YingNan Chiu. J. Chem. Phys., 52, 3641 (1970). DOI: 10.1063/1.1673538
  19. N. Egorova, A. Kouzov, M. Chrysos, F. Rachet. J. Raman Spectrosc., 36, 153 ( 2005). DOI: 10.1002/jrs.1284
  20. M.A. Morrison. P.J. Hay. J. Chem. Phys., 70, 4034 (1979). DOI: 10.1063/1.438025
  21. R.D. Amos, A.D. Buckingham, J.H. Williams. Mol. Phys., 39, 1519 (1980). DOI: 10.1080/00268978000101251
  22. A. Haskopoulos, G. Maroulis. Chem. Phys. Lett., 417, 235 (2006). DOI: 10.1016/j.cplett.2005.10.023
  23. K. Aidas, C. Angeli, K.L. Bak, et al. WIREs Comput. Mol. Sci., 4, 269 (2014). DOI: 10.1002/wcms.1172
  24. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii. Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)
  25. A.P. Kouzov, M. Chrysos, F. Rachet, N.I. Egorova. Phys. Rev. A, 74, 012723 (2006). DOI: 10.1103/PhysRevA.74.012723
  26. D.A. Long. The Raman Effect (Wiley \& Sons Ltd, Chichester, UK, 2002)
  27. R.D. Amos. Chem. Phys. Lett., 87, 23 (1982). DOI: 10.1016/0009-2614(82)83545-8
  28. Dalton, a molecular electronic structure program, Release v2020.1, [Electronic media]. URL: http://daltonprogram.org
  29. T.H. Dunning. J. Chem. Phys., 90, 1007 (1989). DOI: 10.1063/1.456153
  30. D.E. Woon, T.H. Dunning Jr. J. Chem. Phys., 103, 4572 (1995). DOI: 10.1063/1.470645
  31. K.A. Peterson, T.H. Dunning. J. Chem. Phys., 117, 10548 (2002). DOI: 10.1063/1.1520138
  32. O. Christiansen, A. Halkier, H. Koch, T. Helgaker. J. Chem. Phys., 108, 2801 (1998). DOI: 10.1063/1.475671
  33. K. Aidas, C. Angeli, K.L. Bak et al. Dalton2020.1 Dalton Program Manual [Electronic media]. URL: https://daltonprogram.org/manuals/dalton2020manual.pdf
  34. A. Yachmenev, A. Campargue, S.N. Yurchenko, J.K. Upper, J. Tennyson. J. Chem. Phys., 154, 211104 (2021). DOI: 10.1063/5.0053279
  35. T. Helgaker, K. Ruud, K.L. Bak, P. Jrgensen, J. Olsen. Faraday Discuss., 99, 165 (1994). DOI: 10.1039/FD9949900165
  36. T.D. Kolomiitsova, A.V. Lyaptsev, D.N. Shchepkin. Opt. Spectrosc., 88, 648 (2000). DOI: 10.1134/1.626856
  37. M. Chrysos, I.A. Verzhbitskiy, F. Rachet, A.P. Kouzov. J. Chem. Phys., 134, 104310 (2011). DOI: 10.1063/1.3557820

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru