Visualization of Fluorescence Lifetime Decay in Single Cells for Evaluating the Biocompatibility of Self-Assembling Hydrogels
Tikhonova T. N.1, Mozherov A. M. 2, Barkovaya A. V. 1, Efremov Y. M. 2, Kuznetsova D. S. 2, Timashev P. S. 2,3, Shcheslavskiy V. I.4, Fadeev V. V.1, Yakimov B. P.1,2
1Department of Physics, M.V. Lomonosov Moscow State University. Moscow , Russia
2Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
3Department of Сhemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
4Research Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
Email: tikhonova@physics.msu.ru

PDF
Hydrogels self-assembled from short peptides are garnering significant interest due to their remarkable mechanical and biological properties, making them promising for applications in tissue engineering, regenerative medicine, 3D cell culture, and drug delivery. One of the key challenges in developing hydrogels with different structures and chemical compositions is to carefully evaluate their biocompatibility with cells, including the ability of cells to survive, proliferate, and differentiate inside hydrogels. One method for assessing cell viability is fluorescence lifetime imaging microscopy (FLIM), which allows for the detection of changes in cellular metabolism via the signal of endogenous fluorophores at the single-cell level. In this study, the potential for assessing changes in cellular metabolism was investigated using human breast cancer cells (MCF-7) cultured on soft, self-organizing hydrogels with varying levels of biocompatibility made from Fmoc-FF peptide and chitosan. It was demonstrated that FLIM data, combined with advanced segmentation methods based on universal zero-shot Segment Anything neural network model, can assess the metabolic status of cells at the single-cell level in large sample sizes. The presented method enables the tracking of metabolic changes in cells adhered to soft hydrogels and the early detection of scaffold biocompatibility with tissue cells, which is promising for regenerative technology applications. Keywords: hydrogel, fluorescence lifetime imaging microscopy, cell, metabolism.
  1. Z. Liu, M. Tang, J. Zhao, R. Chai, J. Kang. Adv. Mater., 30 (17), 1705388 (2018). DOI: 10.1002/adma.201705388
  2. S. Pina, V.P. Ribeiro, C.F. Marques, F.R. Maia, T.H. Silva, R.L. Reis, J.M. Oliveira. Mater., 12 (11), 1824 (2019). DOI: 10.3390/ma12111824
  3. Y. Tang, H. Wang, S. Liu, L. Pu, X. Hu, J. Ding, G. Xu, W. Xu, S. Xiang, Z. Yuan. Colloids Surf. B, 220, 112973 (2022). DOI: 10.1016/j.colsurfb.2022.112973
  4. Y. Liang, J. He, B. Guo. ACS Nano, 15 (8), 12687 (2021). DOI: 10.1021/acsnano.1c04206
  5. B.C. Borro, R. Nordstr?m, M. Malmsten. Colloids Surf. B, 187, 110835 (2020). DOI: 10.1016/j.colsurfb.2020.110835
  6. V. Basavalingappa, T. Guterman, Y. Tang, S. Nir, J. Lei, P. Chakraborty, L. Schnaider, M. Reches, G. Wei, E. Gazit. Adv. Sci., 6 (12), 1900218 (2019). DOI: 10.1002/advs.201900218
  7. C. Diaferia, M. Ghosh, T. Sibillano, E. Gallo, M. Stornaiuolo, C. Giannini, G. Morelli, L. Adler-Abramovich, A. Accardo. Soft Matter., 15 (3), 487 (2019). DOI: 10.1039/C8SM02366B
  8. M. Vitale, C. Ligorio, B. McAvan, N.W. Hodson, C. Allan, S.M. Richardson, J.A. Hoyland, J. Bella. Acta Biomater., 138, 144 (2022). DOI: 10.1016/j.actbio.2021.11.011
  9. T.N. Tikhonova, V.S. Kolmogorov, R.V. Timoshenko, A.N. Vaneev, D. Cohen-Gerassi, L.A. Osminkina, P.V. Gorelkin, A.S. Erofeev, N.N. Sysoev, L. Adler-Abramovich, E.A. Shirshin. Cells, 11 (24), 4137 (2022). DOI: 10.3390/cells11244137
  10. T.N. Tikhonova, D. Cohen-Gerassi, Z.A. Arnon, Y. Efremov, P. Timashev, L. Adler-Abramovich, E.A. Shirshin. ACS Appl. Mater. Interfaces, 14 (50), 55392 (2022). DOI: 10.1021/acsami.2c17609
  11. K. Suhling, L.M. Hirvonen, J.A. Levitt, P.H. Chung, C. Tregidgo, A. Le Marois, D.A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, S. Coelh, R. Henderson, N. Krstajic. Med. Photonics, 27, 3 (2015). DOI: 10.1016/j.medpho.2014.12.001
  12. S.R. Alam, H. Wallrabe, Z. Svindrych, A.K. Chaudhary, K.G. Christopher, D. Chandra, A. Periasamy. Sci. Rep., 7 (1), 10451 (2017). DOI: 10.1038/s41598-017-10856-3
  13. S. Kalinina, C. Freymueller, N. Naskar, B. von Einem, K. Reess, R. Sroka, A. Rueck. Int. J. Mol. Sci., 22 (11), 5952 (2021). DOI: 10.3390/ijms22115952
  14. M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, J.G. White, N. Ramanujam. Proc. Natl. Acad. Sci., 104 (49), 19494 (2007). DOI: 10.1073/pnas.0708425104
  15. O.I. Kolenc, K.P. Quinn. Antioxid. Redox Signal., 30 (6), 875 (2019). DOI: 10.1089/ars.2017.7451
  16. K. Blinova, S. Carroll, S. Bose, A.V. Smirnov, J.J. Harvey, J.R. Knutson, R.S. Balaban. Biochemistry, 44 (7), 2585 (2005). DOI: 10.1021/bi0485124
  17. D.K. Bird, L. Yan, K.M. Vrotsos, K.W. Eliceiri, E.M. Vaughan, P.J. Keely, J.G. White, N. Ramanujam. Cancer Res., 65 (19), 8766 (2005). DOI: 10.1158/0008-5472.CAN-04-3922
  18. E. Stuntz, Y. Gong, D. Sood, V. Liaudanskaya, D. Pouli, K.P. Quinn, C. Alonzo, Z. Liu, D.L. Kaplan, I. Georgakoudi. Sci. Rep., 7 (1), 1041 (2017). DOI: 10.1038/s41598-017-01015-9
  19. J.M. Berthiaume, J.G. Kurdys, D.M. Muntean, M.G. Rosca. Antioxid. Redox Signal., 30 (3), 375 (2019). DOI: 10.1089/ars.2017.7415
  20. E.A. Shirshin, M.V. Shirmanova, A.V. Gayer, M.M. Lukina, E.E. Nikonova, B.P. Yakimov, G.S. Budylin, V.V. Dudenkova, N.I. Ignatova, D.V. Komarov, V.V. Yakovlev, W. Becker, E.V. Zagaynova, V.I. Shcheslavskiy, M.O. Scully. Proc. Natl. Acad. Sci., 119 (9), e2118241119 (2022). DOI: 10.1073/pnas.2118241119
  21. T. Vicar, J. Balvan, J. Jaros, F. Jug, R. Kolar, M. Masarik, J. Gumulec. BMC Bioinformatics, 20, 1 (2019). DOI: 10.1186/s12859-019-2880-8
  22. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A.C. Berg, W.-Y. Lo, P. Dollar, R. Girshick. Proc. IEEE/CVF Int. Conf. Comput. Vis., 4015-4026 (2023)
  23. N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Radle, C. Rolland, L. Gustafson, E. Mintun, J. Pan, K.V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dollar, C. Feichtenhofer. arXiv preprint arXiv:2408.00714 (2024). DOI: 10.48550/arXiv.2408.00714
  24. Y. Huang, X. Yang, L. Liu, H. Zhou, A. Chang, X. Zhou, R. Chen, J. Yu, J. Chen, C. Chen, S. Liu, H. Chi, X. Hu, K. Yue, L. Li, V. Grau, D.-P. Fan, F. Dong, D. Ni. Med. Image Anal., 92, 103061 (2024). DOI: 10.1016/j.media.2023.103061
  25. URL: https://github.com/facebookresearch/segment-anything
  26. C. Diaferia, G. Morelli, A. Accardo. J. Mater. Chem. B, 7 (34), 5142 (2019). DOI: 10.1039/C9TB01043B
  27. M. Boido, M. Ghibaudi, P. Gentile, E. Favaro, R. Fusaro, C. Tonda-Turo. Sci. Rep., 9 (1), 6402 (2019). DOI: 10.1038/s41598-019-42848-w
  28. T.T. Demirtas, G. Irmak, M. Gumusdereliovglu. Biofabrication, 9 (3), 035003 (2017). DOI: 10.1088/1758-5090/aa7b1d

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru