Raman structural analysis of polyethylene glycols: Experimental study and Quantum chemical modeling
Kozlova L. Yu. 1, Liubimovskii S. O. 1, Ustynyuk L. Yu. 2, Kuzmin V. V. 1, Ivchenko P. V. 2, Moskovskiy M. N. 3, Nikolaeva G. Yu.1, Novikov V. S. 1,3
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
3Federal Scientific Agronomic and Engineering Center VIM, Moscow, Russia
Email: lus.kozlowa2011@kapella.gpi.ru
In spite of wide and diverse practical applications of polyethylene glycols (PEG), dependence of Raman spectra of these substances on molecular weight, structure of terminal groups and conformational composition is still little studied. In this work we experimentally study Raman spectra of liquid samples of ethylene glycol, tri(ethylene glycol), tetra(ethylene glycol), PEG400 and PEG600 as well as methylated mPEG550 and mPEG750. With increase in the number of PEG monomeric units the most noticeable changes are observed for wavenumbers of the bands at 321, 832 and 1125 cm-1 and intensities of the bands at 885, 1043 and 1125 cm-1. We showed that Raman spectra of mPEGs contain additional feature compared with the PEG spectra, namely the band at 2830 cm-1. This band is related to the vibrations of O-CH3 groups. In theoretical part of this work we analyze 16 approximations using the density functional theory for modeling the structure and Raman spectra of PEG molecules in the 72 helix conformation using the ethylene glycol nonamer as an example. By comparing with experimental data from Raman spectroscopy and X-ray diffraction, we show that the combination of the generalized gradient approximation functional OLYP and the 4z basis set of the of Gaussian functions type is the most suitable for calculating the structure and Raman spectra of PEG molecules. Keywords: laser spectroscopy, Raman scattering, density functional theory, structure, conformational composition, molecular weight, polyethylene glycol, methylated polyethylene glycol.
- A.A. D'souza, R. Shegokar. Expert Opin. Drug Deliv., 13, 1257-1275 (2016). DOI: 10.1080/17425247.2016.1182485
- D. Hutanu. Mod. Chem. Appl., 02, (2014). DOI: 10.4172/2329-6798.1000132
- C. Bento, M. Katz, M.M.M. Santos, C.A.M. Afonso. Org. Process Res. Dev., 28, 860-890 (2024). DOI: 10.1021/acs.oprd.3c00428
- K.R. Santhanakrishnan, J. Koilpillai, D. Narayanasamy. Cureus, 16, (2024). DOI: 10.7759/cureus.66669
- A. Servesh, S. Lokesh Kumar, S. Govindaraju, S. Tabassum, J. Raj Prasad, N. Kumar, S.G. Ramaraj. Polym. Adv. Technol., 35, 1-13 (2024). DOI: 10.1002/pat.6433
- R.T. Rooney, K.G. Schmitt, H.F. von Horsten, R. Schmidt, A.A. Gewirth. J. Electrochem. Soc., 165, D687-D695 (2018). DOI: 10.1149/2.0581814jes
- X. Xu, Y. Sun, W. Wang, L. Ju, R. Shu, H. Gu. J. Energy Storage, 104, 114581 (2024). DOI: 10.1016/j.est.2024.114581
- M.N. Mortensen, H. Egsgaard, S. Hvilsted, Y. Shashoua, J. Glastrup. J. Archaeol. Sci., 34, 1211-1218 (2007). DOI: 10.1016/j.jas.2006.10.012
- Y. Puchkova, N. Sedush, E. Kuznetsova, A. Nazarov, S. Chvalun. Rev. Adv. Chem., 13, 152-159 (2023). DOI: 10.1134/s2634827623600056
- E.V. Kuznetsova, N.G. Sedush, Y.A. Puchkova, S.V. Aleshin, E.V. Yastremsky, A.A. Nazarov, S.N. Chvalun. Polymers (Basel), 15, 2296 (2023). DOI: 10.3390/polym15102296
- Y.A. Puchkova, N.G. Sedush, A.D. Ivanenko, V.G. Shuvatova, G.A. Posypanova, S.N. Chvalun. Mendeleev Commun., 33, 404-407 (2023). DOI: 10.1016/j.mencom.2023.04.033
- Y.A. Kadina, E. V. Razuvaeva, D.R. Streltsov, N.G. Sedush, E.V. Shtykova, A.I. Kulebyakina, A.A. Puchkov, D.S. Volkov, A.A. Nazarov, S.N. Chvalun. Molecules, 26, 1-15 (2021). DOI: 10.3390/molecules26030602
- J. Hu, S. Liu. Curr. Opin. Biomed. Eng., 24, 100419 (2022). DOI: 10.1016/j.cobme.2022.100419
- Y. Takahashi, H. Tadokoro. Macromolecules, 6, 672-675 (1973). DOI: 10.1021/ma60035a005
- Y. Takahashi, I. Sumita, H. Tadokoro. J. Polym. Sci. Part A-2, 11, 2113-2122 (1973). DOI: 10.1002/pol.1973.180111103
- M. Kozielski, M. Muhle, Z. B aszczak, M. Szybowicz. Cryst. Res. Technol., 40, 466-470 (2005). DOI: 10.1002/crat.200410368
- M. Kozielski. J. Mol. Liq., 128, 105-107 (2006). DOI: 10.1016/j.molliq.2005.12.012
- H. Matsuura, K. Fukuhara. J. Mol. Struct., 126, 251-260 (1985). DOI: 10.1016/0022-2860(85)80118-6
- H. Matsuura, K. Fukuhara. J. Polym. Sci. Part B, 24, 1383-1400 (1986). DOI: 10.1002/polb.1986.090240702
- S. Di Fonzo, B. Bellich, A. Gamini, N. Quadri, A. Cesaro. Polymer (Guildf), 175, 57-64 (2019). DOI: 10.1016/j.polymer.2019.05.004
- E. Talebian, M. Talebian. Optik (Stuttg)., 125, 228-231 (2014). DOI: 10.1016/j.ijleo.2013.06.095
- L. Malysheva, Y. Klymenko, A. Onipko, R. Valiokas, B. Liedberg. Chem. Phys. Lett., 370, 451-459 (2003). DOI: 10.1016/S0009-2614(03)00116-7
- L. Koenig, A.C. Angood. J. Polym. Sci. Part A-2, 8, 1787-1796 (1970). DOI: 10.1002/pol.1970.160081013
- R. Majumdar, K.S. Alexander, A.T. Riga. Pharmazie, 65, 342-346 (2010). DOI: 10.1691/ph.2010.9280
- X. Yang, Z. Su, D. Wu, S.L. Hsu, H.D. Stidham. Macromolecules, 30, 3796-3802 (1997). DOI: 10.1021/ma961804v
- V.V. Kuzmin, V.S. Novikov, L.Y. Ustynyuk, K.A. Prokhorov, E.A. Sagitova, G.Y. Nikolaeva. J. Mol. Struct., 1217, 128331 (2020). DOI: 10.1016/j.molstruc.2020.128331
- M. Kobayashi, H. Sato. Polym. J., 40, 343-349 (2008). DOI: 10.1295/polymj.PJ2007140
- M. Kozlowska, J. Goclon, P. Rodziewicz. ChemPhysChem, 17, 1143-1153 (2016). DOI: 10.1002/cphc.201501182
- M. Naganathappa, A. Chaudhari. Vib. Spectrosc., 95, 7-15 (2018). DOI: 10.1016/j.vibspec.2017.12.006
- A.Z. Samuel, S. Umapathy. Polym. J., 46, 330-336 (2014). DOI: 10.1038/pj.2014.10
- S.M. Kuznetsov, V.S. Novikov, E.A. Sagitova, L.Y. Ustynyuk, A.A. Glikin, K.A. Prokhorov, G.Y. Nikolaeva, P.P. Pashinin. Laser Phys., 29, 085701 (2019). DOI: 10.1088/1555-6611/ab2908
- S.O. Liubimovskii, L.Y. Ustynyuk, V.S. Novikov, K.T. Kalinin, N.G. Sedush, S.N. Chvalun, S.V. Gudkov, M.N. Moskovskiy, G.Y. Nikolaeva. Phys. Wave Phenom., 32, 423-430 (2024). DOI: 10.3103/S1541308X24700420
- J. Baker, P. Pulay. J. Chem. Phys., 117, 1441-1449 (2002). DOI: 10.1063/1.1485723
- J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865
- R.H. Hertwig, W. Koch. Chem. Phys. Lett., 268, 345-351 (1997). DOI: 10.1016/S0009-2614(97)00207-8
- C. Adamo, V. Barone. J. Chem. Phys., 110, 6158-6170 (1999). DOI: 10.1063/1.478522
- D.N. Lajkov. Razvitie ekonomnogo podhoda k raschetu molekul metodom funkcionala plotnosti i ego primenenie k resheniyu slozhnyh himicheskih zadach. Avtoref. kand. dis. (MGU im. M.V. Lomonosova, M., 2000) (in Russian)
- T.H. Dunning. J. Chem. Phys., 90, 1007-1023 (1989). DOI: 10.1063/1.456153
- V.S. Novikov, V.V. Kuzmin, S.M. Kuznetsov, M.E. Darvin, J. Lademann, E.A. Sagitova, L.Y. Ustynyuk, K.A. Prokhorov, G.Y. Nikolaeva. Spectrochim. Acta Part A, 255, 119668 (2021). DOI: 10.1016/j.saa.2021.119668
- V.V. Kuzmin, V.S. Novikov, E.A. Sagitova, L.Y. Ustynyuk, K.A. Prokhorov, P.V. Ivchenko, G.Y. Nikolaeva. J. Mol. Struct., 1243, 130847 (2021). DOI: 10.1016/j.molstruc.2021.130847
- S.M. Kuznetsov, V.S. Novikov, G.Y. Nikolaeva, M.N. Moskovskiy, P.K. Laptinskaya, E.A. Sagitova. Doklady Physics, 520 (1), 32-40 (2025). DOI: 10.31857/S26867400250105e3
- S.M. Kuznetsov, M.S. Iablochnikova, E.A. Sagitova, K.A. Prokhorov, G.Y. Nikolaeva, L.Y. Ustynyuk, P.V. Ivchenko, A.A. Vinogradov, A.A. Vinogradov, I.E. Nifant'ev. Polymers (Basel), 12, 2153 (2020). DOI: 10.3390/polym12092153
- S.M. Kuznetsov, E.A. Sagitova, K.A. Prokhorov, D.I. Mendeleev, G.Y. Nikolaeva, L.Y. Ustynyuk, A. Materny, P. Donfack. Spectrochim. Acta Part A, 282, 121653 (2022). DOI: 10.1016/j.saa.2022.121653
- D.D. Vasimov, A.A. Ashikhmin, M.A. Bolshakov, M.N. Moskovskiy, S.V. Gudkov, D.V. Yanykin, V.S. Novikov. Doklady Physics, Technical Sciences, 513, 10-17 (2023). DOI: 10.31857/S2686740023060147
- V.V. Kuzmin, S.M. Kuznetsov, V.S. Novikov, L.Yu. Ustynyuk, P.V. Ivchenko, G.Yu. Nikolaeva, E.A. Sagitova. Results Chem., 7, 101293 (2024). DOI: 10.1016/j.rechem.2023.101293
- S.O. Liubimovskii, L.Y. Ustynyuk, A.N. Tikhonov. J. Mol. Liq., 333, 115810 (2021). DOI: 10.1016/j.molliq.2021.115810
- D.N. Laikov. Chem. Phys. Lett., 281, 151-156 (1997). DOI: 10.1016/S0009-2614(97)01206-2
- D.N. Laikov, Y.A. Ustynyuk. Russ. Chem. Bull., 54, 820-826 (2005). DOI: 10.1007/s11172-005-0329-x
- V.S. Novikov, V.V. Kuzmin, M.E. Darvin, J. Lademann, E.A. Sagitova, K.A. Prokhorov, L.Y. Ustynyuk, G.Y. Nikolaeva. Spectrochim. Acta Part A, 270, 120755 (2022). DOI: 10.1016/j.saa.2021.120755
- S. Krimm, K. Song. Macromolecules, 23, 1946-1957 (1990). DOI: 10.1021/ma00209a012
- I. Kim, S. Krimm. Macromolecules, 29, 7186-7192 (1996). DOI: 10.1021/ma960331p
- F. Migliardo, S. Magazu, M.T. Caccamo. J. Mol. Struct., 1048, 261-266 (2013). DOI: 10.1016/j.molstruc.2013.05.060
- E.A. Sagitova, K.A. Prokhorov, G.Y. Nikolaeva, A.V. Baimova, P.P. Pashinin, A.Y. Yarysheva, D.I. Mendeleev. J. Phys. Conf. Ser., 999, 012002 (2018). DOI: 10.1088/1742-6596/999/1/012002
- A. Espina, S. Sanchez-Cortes, Z. Jurav sekova. Molecules, 27, 1-17 (2022). DOI: 10.3390/molecules27010279
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.