Raman structural analysis of polyethylene glycols: Experimental study and Quantum chemical modeling
Kozlova L. Yu. 1, Liubimovskii S. O. 1, Ustynyuk L. Yu. 2, Kuzmin V. V. 1, Ivchenko P. V. 2, Moskovskiy M. N. 3, Nikolaeva G. Yu.1, Novikov V. S. 1,3
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
3Federal Scientific Agronomic and Engineering Center VIM, Moscow, Russia
Email: lus.kozlowa2011@kapella.gpi.ru

PDF
In spite of wide and diverse practical applications of polyethylene glycols (PEG), dependence of Raman spectra of these substances on molecular weight, structure of terminal groups and conformational composition is still little studied. In this work we experimentally study Raman spectra of liquid samples of ethylene glycol, tri(ethylene glycol), tetra(ethylene glycol), PEG400 and PEG600 as well as methylated mPEG550 and mPEG750. With increase in the number of PEG monomeric units the most noticeable changes are observed for wavenumbers of the bands at 321, 832 and 1125 cm-1 and intensities of the bands at 885, 1043 and 1125 cm-1. We showed that Raman spectra of mPEGs contain additional feature compared with the PEG spectra, namely the band at 2830 cm-1. This band is related to the vibrations of O-CH3 groups. In theoretical part of this work we analyze 16 approximations using the density functional theory for modeling the structure and Raman spectra of PEG molecules in the 72 helix conformation using the ethylene glycol nonamer as an example. By comparing with experimental data from Raman spectroscopy and X-ray diffraction, we show that the combination of the generalized gradient approximation functional OLYP and the 4z basis set of the of Gaussian functions type is the most suitable for calculating the structure and Raman spectra of PEG molecules. Keywords: laser spectroscopy, Raman scattering, density functional theory, structure, conformational composition, molecular weight, polyethylene glycol, methylated polyethylene glycol.
  1. A.A. D'souza, R. Shegokar. Expert Opin. Drug Deliv., 13, 1257-1275 (2016). DOI: 10.1080/17425247.2016.1182485
  2. D. Hutanu. Mod. Chem. Appl., 02, (2014). DOI: 10.4172/2329-6798.1000132
  3. C. Bento, M. Katz, M.M.M. Santos, C.A.M. Afonso. Org. Process Res. Dev., 28, 860-890 (2024). DOI: 10.1021/acs.oprd.3c00428
  4. K.R. Santhanakrishnan, J. Koilpillai, D. Narayanasamy. Cureus, 16, (2024). DOI: 10.7759/cureus.66669
  5. A. Servesh, S. Lokesh Kumar, S. Govindaraju, S. Tabassum, J. Raj Prasad, N. Kumar, S.G. Ramaraj. Polym. Adv. Technol., 35, 1-13 (2024). DOI: 10.1002/pat.6433
  6. R.T. Rooney, K.G. Schmitt, H.F. von Horsten, R. Schmidt, A.A. Gewirth. J. Electrochem. Soc., 165, D687-D695 (2018). DOI: 10.1149/2.0581814jes
  7. X. Xu, Y. Sun, W. Wang, L. Ju, R. Shu, H. Gu. J. Energy Storage, 104, 114581 (2024). DOI: 10.1016/j.est.2024.114581
  8. M.N. Mortensen, H. Egsgaard, S. Hvilsted, Y. Shashoua, J. Glastrup. J. Archaeol. Sci., 34, 1211-1218 (2007). DOI: 10.1016/j.jas.2006.10.012
  9. Y. Puchkova, N. Sedush, E. Kuznetsova, A. Nazarov, S. Chvalun. Rev. Adv. Chem., 13, 152-159 (2023). DOI: 10.1134/s2634827623600056
  10. E.V. Kuznetsova, N.G. Sedush, Y.A. Puchkova, S.V. Aleshin, E.V. Yastremsky, A.A. Nazarov, S.N. Chvalun. Polymers (Basel), 15, 2296 (2023). DOI: 10.3390/polym15102296
  11. Y.A. Puchkova, N.G. Sedush, A.D. Ivanenko, V.G. Shuvatova, G.A. Posypanova, S.N. Chvalun. Mendeleev Commun., 33, 404-407 (2023). DOI: 10.1016/j.mencom.2023.04.033
  12. Y.A. Kadina, E. V. Razuvaeva, D.R. Streltsov, N.G. Sedush, E.V. Shtykova, A.I. Kulebyakina, A.A. Puchkov, D.S. Volkov, A.A. Nazarov, S.N. Chvalun. Molecules, 26, 1-15 (2021). DOI: 10.3390/molecules26030602
  13. J. Hu, S. Liu. Curr. Opin. Biomed. Eng., 24, 100419 (2022). DOI: 10.1016/j.cobme.2022.100419
  14. Y. Takahashi, H. Tadokoro. Macromolecules, 6, 672-675 (1973). DOI: 10.1021/ma60035a005
  15. Y. Takahashi, I. Sumita, H. Tadokoro. J. Polym. Sci. Part A-2, 11, 2113-2122 (1973). DOI: 10.1002/pol.1973.180111103
  16. M. Kozielski, M. Muhle, Z. B aszczak, M. Szybowicz. Cryst. Res. Technol., 40, 466-470 (2005). DOI: 10.1002/crat.200410368
  17. M. Kozielski. J. Mol. Liq., 128, 105-107 (2006). DOI: 10.1016/j.molliq.2005.12.012
  18. H. Matsuura, K. Fukuhara. J. Mol. Struct., 126, 251-260 (1985). DOI: 10.1016/0022-2860(85)80118-6
  19. H. Matsuura, K. Fukuhara. J. Polym. Sci. Part B, 24, 1383-1400 (1986). DOI: 10.1002/polb.1986.090240702
  20. S. Di Fonzo, B. Bellich, A. Gamini, N. Quadri, A. Cesaro. Polymer (Guildf), 175, 57-64 (2019). DOI: 10.1016/j.polymer.2019.05.004
  21. E. Talebian, M. Talebian. Optik (Stuttg)., 125, 228-231 (2014). DOI: 10.1016/j.ijleo.2013.06.095
  22. L. Malysheva, Y. Klymenko, A. Onipko, R. Valiokas, B. Liedberg. Chem. Phys. Lett., 370, 451-459 (2003). DOI: 10.1016/S0009-2614(03)00116-7
  23. L. Koenig, A.C. Angood. J. Polym. Sci. Part A-2, 8, 1787-1796 (1970). DOI: 10.1002/pol.1970.160081013
  24. R. Majumdar, K.S. Alexander, A.T. Riga. Pharmazie, 65, 342-346 (2010). DOI: 10.1691/ph.2010.9280
  25. X. Yang, Z. Su, D. Wu, S.L. Hsu, H.D. Stidham. Macromolecules, 30, 3796-3802 (1997). DOI: 10.1021/ma961804v
  26. V.V. Kuzmin, V.S. Novikov, L.Y. Ustynyuk, K.A. Prokhorov, E.A. Sagitova, G.Y. Nikolaeva. J. Mol. Struct., 1217, 128331 (2020). DOI: 10.1016/j.molstruc.2020.128331
  27. M. Kobayashi, H. Sato. Polym. J., 40, 343-349 (2008). DOI: 10.1295/polymj.PJ2007140
  28. M. Kozlowska, J. Goclon, P. Rodziewicz. ChemPhysChem, 17, 1143-1153 (2016). DOI: 10.1002/cphc.201501182
  29. M. Naganathappa, A. Chaudhari. Vib. Spectrosc., 95, 7-15 (2018). DOI: 10.1016/j.vibspec.2017.12.006
  30. A.Z. Samuel, S. Umapathy. Polym. J., 46, 330-336 (2014). DOI: 10.1038/pj.2014.10
  31. S.M. Kuznetsov, V.S. Novikov, E.A. Sagitova, L.Y. Ustynyuk, A.A. Glikin, K.A. Prokhorov, G.Y. Nikolaeva, P.P. Pashinin. Laser Phys., 29, 085701 (2019). DOI: 10.1088/1555-6611/ab2908
  32. S.O. Liubimovskii, L.Y. Ustynyuk, V.S. Novikov, K.T. Kalinin, N.G. Sedush, S.N. Chvalun, S.V. Gudkov, M.N. Moskovskiy, G.Y. Nikolaeva. Phys. Wave Phenom., 32, 423-430 (2024). DOI: 10.3103/S1541308X24700420
  33. J. Baker, P. Pulay. J. Chem. Phys., 117, 1441-1449 (2002). DOI: 10.1063/1.1485723
  34. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865
  35. R.H. Hertwig, W. Koch. Chem. Phys. Lett., 268, 345-351 (1997). DOI: 10.1016/S0009-2614(97)00207-8
  36. C. Adamo, V. Barone. J. Chem. Phys., 110, 6158-6170 (1999). DOI: 10.1063/1.478522
  37. D.N. Lajkov. Razvitie ekonomnogo podhoda k raschetu molekul metodom funkcionala plotnosti i ego primenenie k resheniyu slozhnyh himicheskih zadach. Avtoref. kand. dis. (MGU im. M.V. Lomonosova, M., 2000) (in Russian)
  38. T.H. Dunning. J. Chem. Phys., 90, 1007-1023 (1989). DOI: 10.1063/1.456153
  39. V.S. Novikov, V.V. Kuzmin, S.M. Kuznetsov, M.E. Darvin, J. Lademann, E.A. Sagitova, L.Y. Ustynyuk, K.A. Prokhorov, G.Y. Nikolaeva. Spectrochim. Acta Part A, 255, 119668 (2021). DOI: 10.1016/j.saa.2021.119668
  40. V.V. Kuzmin, V.S. Novikov, E.A. Sagitova, L.Y. Ustynyuk, K.A. Prokhorov, P.V. Ivchenko, G.Y. Nikolaeva. J. Mol. Struct., 1243, 130847 (2021). DOI: 10.1016/j.molstruc.2021.130847
  41. S.M. Kuznetsov, V.S. Novikov, G.Y. Nikolaeva, M.N. Moskovskiy, P.K. Laptinskaya, E.A. Sagitova. Doklady Physics, 520 (1), 32-40 (2025). DOI: 10.31857/S26867400250105e3
  42. S.M. Kuznetsov, M.S. Iablochnikova, E.A. Sagitova, K.A. Prokhorov, G.Y. Nikolaeva, L.Y. Ustynyuk, P.V. Ivchenko, A.A. Vinogradov, A.A. Vinogradov, I.E. Nifant'ev. Polymers (Basel), 12, 2153 (2020). DOI: 10.3390/polym12092153
  43. S.M. Kuznetsov, E.A. Sagitova, K.A. Prokhorov, D.I. Mendeleev, G.Y. Nikolaeva, L.Y. Ustynyuk, A. Materny, P. Donfack. Spectrochim. Acta Part A, 282, 121653 (2022). DOI: 10.1016/j.saa.2022.121653
  44. D.D. Vasimov, A.A. Ashikhmin, M.A. Bolshakov, M.N. Moskovskiy, S.V. Gudkov, D.V. Yanykin, V.S. Novikov. Doklady Physics, Technical Sciences, 513, 10-17 (2023). DOI: 10.31857/S2686740023060147
  45. V.V. Kuzmin, S.M. Kuznetsov, V.S. Novikov, L.Yu. Ustynyuk, P.V. Ivchenko, G.Yu. Nikolaeva, E.A. Sagitova. Results Chem., 7, 101293 (2024). DOI: 10.1016/j.rechem.2023.101293
  46. S.O. Liubimovskii, L.Y. Ustynyuk, A.N. Tikhonov. J. Mol. Liq., 333, 115810 (2021). DOI: 10.1016/j.molliq.2021.115810
  47. D.N. Laikov. Chem. Phys. Lett., 281, 151-156 (1997). DOI: 10.1016/S0009-2614(97)01206-2
  48. D.N. Laikov, Y.A. Ustynyuk. Russ. Chem. Bull., 54, 820-826 (2005). DOI: 10.1007/s11172-005-0329-x
  49. V.S. Novikov, V.V. Kuzmin, M.E. Darvin, J. Lademann, E.A. Sagitova, K.A. Prokhorov, L.Y. Ustynyuk, G.Y. Nikolaeva. Spectrochim. Acta Part A, 270, 120755 (2022). DOI: 10.1016/j.saa.2021.120755
  50. S. Krimm, K. Song. Macromolecules, 23, 1946-1957 (1990). DOI: 10.1021/ma00209a012
  51. I. Kim, S. Krimm. Macromolecules, 29, 7186-7192 (1996). DOI: 10.1021/ma960331p
  52. F. Migliardo, S. Magazu, M.T. Caccamo. J. Mol. Struct., 1048, 261-266 (2013). DOI: 10.1016/j.molstruc.2013.05.060
  53. E.A. Sagitova, K.A. Prokhorov, G.Y. Nikolaeva, A.V. Baimova, P.P. Pashinin, A.Y. Yarysheva, D.I. Mendeleev. J. Phys. Conf. Ser., 999, 012002 (2018). DOI: 10.1088/1742-6596/999/1/012002
  54. A. Espina, S. Sanchez-Cortes, Z. Jurav sekova. Molecules, 27, 1-17 (2022). DOI: 10.3390/molecules27010279

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru