Photoinduced change of AgInS2 quantum dots fluorescence properties: influence of protein environment
Gorbacheva V.I.1, Reznik I. A. 2, Kolesova E.P. 1
1Sirius University of Science and Technology, Sirius Federal territory, Russia
2ITMO University, St. Petersburg, Russia
Email: tinafowl7@gmail.com, ivan.reznik@metalab.ifmo.ru, e.p.kolesova@gmail.com

PDF
Semiconductor quantum dots (QDs) AgInS2 and AgInS2/ZnS were synthesized and changes in their fluorescence properties under external radiation were studied. To assess the effect of the protein environment, QDs were encapsulated in albumin nanoparticles and coated with a fetal bovine serum shell to imitate the protein corona. It was demonstrated that the protein environment has a significant effect on the luminescent properties of QDs, namely, a hypsochromic shift of the luminescence band and a decrease in the luminescence quantum yield. The results showed that ZnS shell and both types of protein shells lead to a decrease in the photobleaching rate of the fluorescent properties of QDs as a result of interaction with light. Keywords: quantum dots, fluorescence, photoinduced processes, protein corona, albumin nanocarriers.
  1. D.S. Kumar, B.J. Kumar, H.M. Mahesh. Synthesis of Inorganic Nanomaterials, 59-88 (2018). DOI: 10.1016/B978-0-08-101975-7.00003-8
  2. F.P. Garci a de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer, E.H. Sargent. Science, 373 (6555), eaaz8541 (2021). DOI: 10.1126/science.aaz8541
  3. V.K. Sharma, T.J. McDonald, M. Sohn, G.A. Anquandah, M. Pettine, R. Zboril. Chemosphere, 188, 403 (2017). DOI: 10.1016/j.chemosphere.2017.08.130
  4. A. Lin, X.H. Zhang, M.M. Chen, Q. Cao. J. Env. Sc., 19 (5), 596 (2007). DOI: 10.1016/S1001-0742(07)60099-0
  5. J.Y. Chang, G.Q. Wang, C.Y. Cheng, W.X. Lin, J.C. Hsu. J. Mat. Chem., 22 (21), 10609 (2012). DOI: 10.1039/C2JM30679D
  6. K.N. Baranov, E.P. Kolesova, M.A. Baranov, A.O. Orlova. Opt. Spectrosc., 130 (5), 336 (2022). DOI: 10.1134/S0030400X22060017
  7. S.F. Lee, M.A. Osborne. ChemPhysChem, 10 (13), 2174 (2009). DOI: 10.1002/cphc.200900200
  8. E.P. Kolesova, F.M. Safin, V.G. Maslov, Y.K. Gun'ko, A.O. Orlova. Opt. Spectrosc., 127, 548 (2019). DOI: 10.1134/S0030400X19090157
  9. W. Kim, N.K. Ly, Y. He, Y. Li, Z. Yuan, Y. Yeo. Adv. Drug Delivery Rev., 192, 114635 (2023). DOI: 10.1016/j.addr.2022.114635
  10. A. Spada, J. Emami, J.A. Tuszynski, A. Lavasanifar. Mol. Pharmaceutics, 18 (5), 1862 (2021). DOI: 10.1021/acs.molpharmaceut.1c00046
  11. Q. Ji, H. Zhu, Y. Qin, R. Zhang, L. Wang, E. Zhang, R. Meng. Frontiers in Pharmacology, 15, 1329636 (2024). DOI: 10.3389/fphar.2024.1329636/full
  12. A.M. Bannunah, D. Vllasaliu, J. Lord, S. Stolnik. Mol. Pharmaceutics, 11 (12), 4363 (2014). DOI: 10.1021/mp500439c
  13. A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, A. Eychm?ller. J. Phys. Chem. C, 121 (16), 9032 (2017). DOI: 10.1021/acs.jpcc.7b00849
  14. E.P. Kolesova, V.S. Egorova, A.O. Syrocheva, A.S. Frolova, D. Kostyushev, A. Kostyusheva, A. Parodi. Int. J. Mol. Sci., 24 (12), 10245 (2023). DOI: 10.3390/ijms241210245
  15. I.A. Mir, M.A. Bhat, Z. Muhammad, S.U. Rehman, M. Hafeez, Q. Khan, L. Zhu. J. Alloys and Compounds, 811, 151688 (2019). DOI: 10.1016/j.jallcom.2019.151688
  16. L. Lai, C. Lin, Z.Q. Xu, X.L. Han, F.F. Tian, P. Mei, Y. Liu. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 97, 366 (2012). DOI: 10.1016/j.saa.2012.06.025
  17. C. Rivaux, T. Akdas, R. Yadav, O. El-Dahshan, D. Moodelly, W.L. Ling, P. Reiss. J. Phys. Chem. C, 126 (48), 20524 (2022). DOI: 10.1021/acs.jpcc.2c06849

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru