Photoinduced change of AgInS2 quantum dots fluorescence properties: influence of protein environment
Gorbacheva V.I.1, Reznik I. A. 2, Kolesova E.P.
1
1Sirius University of Science and Technology, Sirius Federal territory, Russia
2ITMO University, St. Petersburg, Russia
Email: tinafowl7@gmail.com, ivan.reznik@metalab.ifmo.ru, e.p.kolesova@gmail.com
Semiconductor quantum dots (QDs) AgInS2 and AgInS2/ZnS were synthesized and changes in their fluorescence properties under external radiation were studied. To assess the effect of the protein environment, QDs were encapsulated in albumin nanoparticles and coated with a fetal bovine serum shell to imitate the protein corona. It was demonstrated that the protein environment has a significant effect on the luminescent properties of QDs, namely, a hypsochromic shift of the luminescence band and a decrease in the luminescence quantum yield. The results showed that ZnS shell and both types of protein shells lead to a decrease in the photobleaching rate of the fluorescent properties of QDs as a result of interaction with light. Keywords: quantum dots, fluorescence, photoinduced processes, protein corona, albumin nanocarriers.
- D.S. Kumar, B.J. Kumar, H.M. Mahesh. Synthesis of Inorganic Nanomaterials, 59-88 (2018). DOI: 10.1016/B978-0-08-101975-7.00003-8
- F.P. Garci a de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer, E.H. Sargent. Science, 373 (6555), eaaz8541 (2021). DOI: 10.1126/science.aaz8541
- V.K. Sharma, T.J. McDonald, M. Sohn, G.A. Anquandah, M. Pettine, R. Zboril. Chemosphere, 188, 403 (2017). DOI: 10.1016/j.chemosphere.2017.08.130
- A. Lin, X.H. Zhang, M.M. Chen, Q. Cao. J. Env. Sc., 19 (5), 596 (2007). DOI: 10.1016/S1001-0742(07)60099-0
- J.Y. Chang, G.Q. Wang, C.Y. Cheng, W.X. Lin, J.C. Hsu. J. Mat. Chem., 22 (21), 10609 (2012). DOI: 10.1039/C2JM30679D
- K.N. Baranov, E.P. Kolesova, M.A. Baranov, A.O. Orlova. Opt. Spectrosc., 130 (5), 336 (2022). DOI: 10.1134/S0030400X22060017
- S.F. Lee, M.A. Osborne. ChemPhysChem, 10 (13), 2174 (2009). DOI: 10.1002/cphc.200900200
- E.P. Kolesova, F.M. Safin, V.G. Maslov, Y.K. Gun'ko, A.O. Orlova. Opt. Spectrosc., 127, 548 (2019). DOI: 10.1134/S0030400X19090157
- W. Kim, N.K. Ly, Y. He, Y. Li, Z. Yuan, Y. Yeo. Adv. Drug Delivery Rev., 192, 114635 (2023). DOI: 10.1016/j.addr.2022.114635
- A. Spada, J. Emami, J.A. Tuszynski, A. Lavasanifar. Mol. Pharmaceutics, 18 (5), 1862 (2021). DOI: 10.1021/acs.molpharmaceut.1c00046
- Q. Ji, H. Zhu, Y. Qin, R. Zhang, L. Wang, E. Zhang, R. Meng. Frontiers in Pharmacology, 15, 1329636 (2024). DOI: 10.3389/fphar.2024.1329636/full
- A.M. Bannunah, D. Vllasaliu, J. Lord, S. Stolnik. Mol. Pharmaceutics, 11 (12), 4363 (2014). DOI: 10.1021/mp500439c
- A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, A. Eychm?ller. J. Phys. Chem. C, 121 (16), 9032 (2017). DOI: 10.1021/acs.jpcc.7b00849
- E.P. Kolesova, V.S. Egorova, A.O. Syrocheva, A.S. Frolova, D. Kostyushev, A. Kostyusheva, A. Parodi. Int. J. Mol. Sci., 24 (12), 10245 (2023). DOI: 10.3390/ijms241210245
- I.A. Mir, M.A. Bhat, Z. Muhammad, S.U. Rehman, M. Hafeez, Q. Khan, L. Zhu. J. Alloys and Compounds, 811, 151688 (2019). DOI: 10.1016/j.jallcom.2019.151688
- L. Lai, C. Lin, Z.Q. Xu, X.L. Han, F.F. Tian, P. Mei, Y. Liu. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 97, 366 (2012). DOI: 10.1016/j.saa.2012.06.025
- C. Rivaux, T. Akdas, R. Yadav, O. El-Dahshan, D. Moodelly, W.L. Ling, P. Reiss. J. Phys. Chem. C, 126 (48), 20524 (2022). DOI: 10.1021/acs.jpcc.2c06849
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.